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Discontinuity of Shannon’s 
Information Measures 
q Shannon’s information measures: H(X), H(X|Y), I(X;Y) 

and I(X;Y|Z). 

q They are described as continuous functions [Shannon 
1948] [Csiszár & Körner 1981] [Cover & Thomas 
1991] [McEliece 2002] [Yeung 2002].  

q All Shannon's information measures are indeed 
discontinuous everywhere when random variables 
take values from countably infinite alphabets [Ho & 
Yeung 2005].   

q e.g., X can be any positive integer. 
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q Let PX = {1, 0, 0, ...} and 

q As n → ∞, we have 

  

q However, 

Discontinuity of Entropy 
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q Theorem 1: For any c ≥ 0 and any X taking values 
from a countably infinite alphabet with H(X) < ∞,  

Discontinuity of Entropy 
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q Theorem 2: For any c ≥ 0 and any X taking values 
from countably infinite alphabet with H(X) < ∞,  

Discontinuity of Entropy 
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Pinsker’s inequality 

q By Pinsker’s inequality, convergence w.r.t.          
implies convergence w.r.t.         . 

q Therefore, Theorem 2 implies Theorem 1.   
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Discontinuity of Entropy 
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q Theorem 3: For any X, Y and Z taking values from 
countably infinite alphabet with I(X;Y|Z) < ∞, 

 

Discontinuity of Shannon’s 
Information Measures 
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Applications: 
channel coding theorem 

lossless/lossy source coding theorems, etc.  
 

Typicality Fano’s  
Inequality 

Shannon’s  
Information Measures 

Discontinuity of Shannon’s 
Information Measures 
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To Find the Capacity of a 
Communication Channel 

Alice 

Capacity ≥ C1   Typicality 

Channel Bob 

Capacity ≤ C2   Fano’s Inequality 

P.10 
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On Countably Infinite Alphabet 

Applications: 
channel coding theorem 

lossless/lossy source coding theorems, etc.  
 

Typicality Fano’s  
Inequality 

Shannon’s  
Information Measures 

discontinuous! 
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Typicality 

q Weak typicality was first introduced by Shannon 
[1948] to establish the source coding theorem. 

q Strong typicality was first used by Wolfowitz [1964] 
and then by Berger [1978].  It was further developed 
into the method of types by Csiszár and Körner 
[1981]. 

q Strong typicality possesses stronger properties 
compared with weak typicality. 

q  It can be used only for random variables with finite 
alphabet. 
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q Consider an i.i.d. source {Xk, k ≥ 1}, where Xk taking 
values from a countable alphabet X .  

q Let                  for all k. 
q Assume H(PX) < ∞. 
q Let X = (X1, X2, …, Xn) 

Notations 

q For a sequence x = (x1, x2, …, xn) ∈ X n , 
q N(x; x) is the number of occurrences of x in x 
q q(x; x) = n-1N(x; x) and 
q QX = {q(x; x)} is the empirical distribution of x 
q e.g., x = (1, 3, 2, 1, 1).  

   N(1; x) = 3, N(2; x) = N(3; x) =1 
  QX = {3/5, 1/5, 1/5}. 

kXX PP =
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q Definition    (Weak typicality): For any ε > 0, the weakly 
typical set Wn

[X]ε with respect to PX is the set of sequences 
x = (x1, x2, …, xn) ∈ X n such that 

Weak Typicality 
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q Note that 

Weak Typicality 

|D(Q
X
|| P

X
)+H (Q

X
)−H (P

X
) |≤ ε

q Definition 1 (Weak typicality): For any ε > 0, the weakly 
typical set Wn

[X]ε with respect to PX is the set of sequences 
x = (x1, x2, …, xn) ∈ X n such that 

H (Q
X
) = − Q

X

x
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(x)Empirical entropy 
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q Theorem 4 (Weak AEP): For any ε > 0:  
q 1) If x ∈ Wn

[X]ε , then  

q 2) For sufficiently large n,  

q 3) For sufficiently large n,  

Asymptotic Equipartition Property 
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Illustration of AEP 

X n − Set of all n-sequences 	

Typical Set of n-sequences: 
Prob. ≈ 1 
≈ Uniform distribution 
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q Strong typicality has been defined in slightly different 
forms in the literature. 

q Definition 2 (Strong typicality): For |X | < ∞ and any δ > 0, 
the strongly typical set Tn

[X]δ with respect to PX is the set of 
sequences x = (x1, x2, …, xn) ∈ X n such that 

 the variational distance between the empirical distribution 
of the sequence x and PX is small. 

Strong Typicality 

∑ ≤−= x XXX xqxPQPV δ|);()(|),( x
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q Theorem 5 (Strong AEP): For a finite alphabet X  and any 
δ > 0:  
q 1) If x ∈ Tn

[X]δ , then  

q 2) For sufficiently large n,  

q 3) For sufficiently large n,  

Asymptotic Equipartition Property 
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Breakdown of Strong AEP 
q  If strong typicality is extended (in the natural way) to 

countably infinite alphabets, strong AEP no longer 
holds 

q Specifically, Property 2 holds but Properties 1 and 3 
do not hold.  

P.20 



21 

Typicality 

X n finite alphabet 	 Weak Typicality:	

ε≤−+ |)()()||(| XXXX PHQHPQD

δ≤),( XX QPV

Strong Typicality:	
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Unified Typicality 

X n countably infinite alphabet 	
Weak Typicality:	

Strong Typicality:	

ε≤−+ |)()()||(| XXXX PHQHPQD

δ≤),( XX QPV

large is |)()(| XX PHQH −
 ∃x s.t.  	 small is )||( XX PQD
but	
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Unified Typicality 

X n countably infinite alphabet 	
Weak Typicality:	

ε≤−+ |)()()||(| XXXX PHQHPQD

Unified Typicality:	

.|)()(|)||( η≤−+ XXXX PHQHPQD

Strong Typicality:	

δ≤),( XX QPV



q Definition 3 (Unified typicality): For any η > 0, the 
unified typical set Un

[X]η with respect to PX is the set of 
sequences  x = (x1, x2, …, xn) ∈ X n such that 

 
q Weak Typicality:   
 

 Strong Typicality:   
 

q Each typicality corresponds to a “distance measure” 

q Entropy is continuous w.r.t. the distance measure induced 
by unified typicality  
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Unified Typicality 
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q Theorem 6 (Unified AEP): For any  > 0:  
q 1) If x ∈ Un

[X]η , then  

q 2) For sufficiently large n,  

q 3) For sufficiently large n,  

Asymptotic Equipartition Property 
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q Theorem 7: For any x ∈ X n,  

 if x ∈ Un
[X]η , then x ∈ Wn

[X]ε and x ∈ Tn
[X]δ  ,  

  

Unified Typicality 

.2ln2andwhere ⋅== ηδηε    
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q Consider a bivariate information source {(Xk, Yk), k ≥ 1}           
where (Xk, Yk) are i.i.d. with generic distribution PXY . 

q We use (X, Y) to denote the pair of generic random 
variables. 

q Let (X, Y) = ((X1, Y1), (X2, Y2), …, (Xn, Yn)). 

q For the pair of sequence (x, y), the empirical distribution 
is  QXY = {q(x,y; x,y)} where q(x,y; x,y) = n-1N(x,y; x,y). 

Unified Jointly Typicality 
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q Definition 4 (Unified jointly typicality): For any η > 0, the 
unified typical set Un

[XY]η with respect to PXY is the set of 
sequences  (x, y) ∈ X n×Y n such that 

 

q This definition cannot be simplified. 

Unified Jointly Typicality 
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q Definition 5: For any x ∈ Un
[X]η , the conditional typical 

set of Y is defined as 

 

 

q Theorem 8: For x ∈ Un
[X]η, if  

 

 then 

 

 where ν → 0 as η → 0 and then n → ∞ 

Conditional AEP 

2n(H (Y |X )−ν ) ≤ U[Y |X ]η
n (x) ≤ 2n(H (Y |X )+ν )

U[Y |X ]η
n (x) ≥1,

U[Y |X ]η
n (x) = y ∈U[Y ]η

n : (x,y)∈U[XY ]η
n{ }



Illustration of Conditional AEP 
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q Rate-distortion theory 
q A version of rate-distortion theorem was proved by strong 

typicality [Cover & Thomas 1991][Yeung 2008] 

q  It can be easily generalized to countably infinite alphabet 

q Multi-source network coding 
q The achievable information rate region in multisource 

network coding problem was proved by strong typicality 
[Yeung 2008] 

q  It can be easily generalized to countably infinite alphabet 

Applications 
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Fano’s Inequality 

q Fano's inequality: For discrete random variables X and 
Y taking values on the same alphabet X = {1, 2, …}, 
let 

q Then 

 where 
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Motivation 1 

q This upper bound on              is not tight. 

q For fixed   and        , can always find     such that  
 

q Then we can ask, for fixed PX   and    , what is  
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Motivation 2 

q  If X is countably infinite, Fano’s inequality no longer 
gives an upper bound on H(X|Y).   

q  It is possible that         which can be 
explained by the discontinuity of entropy. 

q    

q Then  H(Xn|Yn) = H(Xn) → ∞ but  

q Under what conditions ε → 0 ⇒ H(X|Y) → 0 for 
countably infinite alphabets? 
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Tight Upper Bound on H(X|Y) 
q Theorem 9: Suppose          , then 

 where the right side is the tight bound dependent on ε and 
PX.  (This is the simplest of the 3 cases.) 
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Generalizing Fano’s Inequality 
q Fano's inequality [Fano 1952] gives an upper bound 

on the conditional entropy H(X|Y) in terms of the error 
probability ε = Pr{X ≠ Y}. 

q e.g. PX = [0.4, 0.4, 0.1, 0.1] 

[Ho & Verdú 2008]

ε

H(X|Y)

[Fano 1952]
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Generalizing Fano’s Inequality 
q e.g., X is a Poisson random variable with mean equal 

to 10. 

q Fano's inequality no longer gives an upper bound on 
H(X|Y). 

ε

H(X|Y)
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Generalizing Fano’s Inequality 

ε

H(X|Y)

q e.g. X is a Poisson random variable with mean equal 
to 10. 

q Fano's inequality no longer gives an upper bound on 
H(X|Y). 

[Ho & Verdú 2008]
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Joint Source-Channel Coding 

),,( 21 kSSS … ),,( 21 nXXX …

)ˆ,ˆ,ˆ( 21 kSSS … ),,( 21 nYYY …

Encoder 

Channel 

Decoder 

k-to-n joint source-channel code	
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Error Probabilities 

q The average symbol error probability is defined as 

q The block error probability is defined as 
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Symbol Error Rate 

q Theorem 10: For any discrete memoryless source 
and general channel, the rate of a k-to-n joint source-
channel code with symbol error probability λk satisfies 

 where S* is constructed from {S1, S2, ..., Sk} according 
to 
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Block Error Rate 

q Theorem 11: For any general discrete source and 
general channel, the block error probability µk of a k-
to-n joint source-channel code is lower bounded by 
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q Weak secrecy                                    
has been considered in [Csiszár & Körner 78, 
Broadcast channel] and some seminal papers.  

q  [Wyner 75, Wiretap channel I] only stated that “a 
large value of the equivocation implies a large value 
of Pew”, where the equivocation refers to                         
and Pew means 

q  It is important to clarify what exactly weak secrecy 
implies. 
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Information Theoretic Security 
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Weak Secrecy 
q E.g., PX = (0.4, 0.4, 0.1, 0.1). 

[Ho & Verdú 2008]	

ε = P[X ≠ Y]

H(X|Y)	

[Fano 1952]	
H(X)	
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Weak Secrecy 
q Theorem 12: For any discrete stationary memoryless 

source (i.i.d. source) with distribution PX , if 

q Then 

 
q Remark:  

q Weak Secrecy together with the stationary source 
assumption is insufficient to show the maximum error 
probability. 

q The proof is based on the tight upper bound on H(X|Y) in 
terms of error probability. 
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Summary 

Applications: 
channel coding theorem 

lossless/lossy source coding theorems 
 

Typicality Fano’s  
Inequality 

Weak 
Typicality 

Strong 
Typicality 

Shannon’s  
Information Measures 
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On Countably Infinite Alphabet 

Applications: 
channel coding theorem 

lossless/lossy source coding theorem 
 

Typicality 

Weak 
Typicality 

Shannon’s  
Information Measures 

discontinuous! 
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Unified Typicality 

Applications: 
channel coding theorem 

MSNC/lossy SC theorems 

Typicality 

Unified 
Typicality 

Shannon’s  
Information Measures 
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Unified 
Typicality 

Generalized Fano’s Inequality 

Applications: 
results on JSCC, IT security 
MSNC/lossy SC theorems 

 
Typicality 

Generalized 
Fano’s  

Inequality 

Shannon’s  
Information Measures 
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A lot of fundamental research in information theory are 
still waiting for us to investigate. 

Perhaps... 
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Q & A 
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Why Countably Infinite Alphabet? 

q An important mathematical theory can provide some 
insights which cannot be obtained from other means.  

q Problems involve random variables taking values from 
countably infinite alphabets. 

q  Finite alphabet is the special case. 

q Benefits: tighter bounds, faster convergent rates, etc. 

q  In source coding, the alphabet size can be very large, 
infinite or unknown. 
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Discontinuity of Entropy 
q Entropy is a measure of uncertainty. 

q We can be more and more sure that a particular event will 
happen as time goes, but at the same time, the uncertainty of the 
whole picture keeps on increasing. 

q  If one found the above statement counter-intuitive, he/she 
may have the concept that entropy is continuous rooted in 
his/her mind.   

q  The limiting probability distribution may not fully 
characterize the asymptotic behavior of a Markov chain.  



Discontinuity of Entropy 

Suppose a child hides in a shopping mall where the floor 
plan is shown in the next slide. 
 
In each case, the chance for him to hide in a room is 
directly proportional to the size of the room.   
 
We are only interested in which room the child locates in 
but not his exact position inside a room.  
 
Which case do you expect is the easiest to locate the 
child? 

P.55 



Case A 
1 blue room +  
2 green rooms 

Case B 
1 blue room + 

16 green rooms 

Case C 
1 blue room + 

256 green rooms 

Case D 
1 blue room + 

4096 green rooms 

Case A Case B Case C Case D 

The chance in  

the blue room 

0.5 0.622 0.698 0.742 

The chance in 

 a green room 

0.25 0.0326 0.00118 0.000063 

P.56 



Discontinuity of Entropy 
From Case A to Case D, the difficulty is increasing.  By the Shannon 
entropy, the uncertainty is increasing although the probability of the child 
being in the blue room is also increasing.   
 
We can continue to construct this example and make the chance in the blue 
room approaching to 1! 
 
The critical assumption is that the number of rooms can be unbounded. So 
we have seen that 
“There is a very sure event” and “large uncertainty of the whole picture” can 
exist at the same time. 
 
Imagine there is a city where everyone has a normal life everyday with 
probability 0.99.  
With probability 0.01, however, any kind of accident that beyond our 
imagination can happen.   
Would you feel a big uncertainty about your life if you were living in that 
city? P.57 



P.58 

n  Weak secrecy is insufficient to show the maximum 
error probability. 

n  Example 1: Let W, V and Xi be binary random variables. 

n  Suppose W and V are independent and uniform.   

n  Let 
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n  Let 

n  Then 
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Joint Unified Typicality 

3 2

Q = {q(xy)} 

X       Y 

2 2 2

P = {p(xy)} 

X       Y 

D(Q||P) << 1 

Ans: 

Can  

be changed to  
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Joint Unified Typicality 

3 1

Q = {q(xy)} 

X       Y 

2 2 2

P = {p(xy)} 

X       Y 

? 

D(Q||P) << 1 

Ans: 

Can  
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q  Theorem 5 (Consistency): For any (x,y) ∈ X n×Y n,  

 if (x,y) ∈ Un
[XY]η , then x ∈ Un

[X]η and y ∈ Un
[Y]η .  

 

q  Theorem 6 (Unified JAEP): For any η > 0:  

q 1) If (x, y) ∈ Un
[XY]η , then  

q 2) For sufficiently large n,  

q 3) For sufficiently large n,  

Asymptotic Equipartition Property 
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