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Optimal Control Applications
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Path Planning (Vasudevan et
al., 2013)

Dynamic Game Verification
(Margellos & Lygeros, 2011)

Robust & Ensemble Control
(Zlotnik & Li, 2012)
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General Optimal Control Formulation

min
u(·), x0, T

∫ T

0
L
(
x(s), u(s)

)
ds+ ϕ

(
x(T )

)
,

subject to: ẋ(t) = f
(
x(t), u(t)

)
, ∀t ∈ [0, T ],

x(0) = x0,

x(t) ∈ X , ∀t ∈ [0, T ],

u(t) ∈ U , ∀t ∈ [0, T ],(
x0, x(T )

)
∈ S.
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From Theory to Practice...

Pros:

Optimal control framework is
flexible.

Decades of accumulated
literature.

Particular cases can be
efficiently solved.

Cons:

General numerical solvers are
prone to converge to
non-minimizers.

Computation time can be very
long, even for small problems.
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Summary of this Talk

We developed a new class of numerical optimal control synthesis
method.

Trade-off between accuracy and efficiency can be easily
configured.
Aim to solve large-scale problems.

Our algorithm avoids many undesirable stationary points.

Enable real-time applications.

R. He and H. Gonzalez, “Numerical Synthesis of Pontryagin Optimal Control Minimizers Using Sampling-Based
Methods,” , 2017. arXiv: 1703.10751
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1. Critical Point Characterization

2. Synthesis of Optimal Control Inputs

3. Simulation: Optimal HVAC Operation
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Simplified Optimal Control Formulation

Let us define the original optimal control problem:

(Po) min
u(·)

ϕ
(
x(T )

)
,

subject to: ẋ(t) = f
(
x(t), u(t)

)
, ∀t ∈ [0, T ],

x(0) = x0,

u(t) ∈ U , ∀t ∈ [0, T ].

where:

x0 ∈ Rn is given

U ⊂ Rm is compact and convex.

E. Polak, Optimization: Algorithms and Consistent Approximations, ser. Applied Mathematical Sciences. Springer,
1997, Chapter 4.1.2
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Relaxed Optimal Control Formulation

Now consider the relaxed optimal control problem:

(Pr) min
{µt}t∈[0,T ]

ϕ
(
x(T )

)
,

subject to: ẋ(t) =

∫
Rm

f
(
x(t), u

)
dµt(u), ∀t ∈ [0, T ],

x(0) = x0,

supp(µt) ⊂ U , ∀t ∈ [0, T ].

where, for each t ∈ [0, T ], µt is a unitary Borel measure, i.e.:∫
Rm

dµt(u) = 1.

J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, 1972
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Original-Relaxed Equivalence

Given û(t) : [0, T ]→ U , let µt(u) = 1[u = û(t)] for each t.

Then both original and relaxed trajectories generated by û and µ
are equivalent.

Thus, Feas(Po) ⊂ Feas(Pr), and Value(Po) > Value(Pr).

Proposition

Value(Po) = Value(Pr).

The proof follows using Berkovitz’s Chattering Lemma for switched
systems and the fact that L2 convergence of inputs implies uniform
convergence of the trajectories.

L. D. Berkovitz, Optimal Control Theory, ser. Applied Mathematical Sciences. Springer, 1974

Sampling-Based Optimal Control Synthesis ESE, Washington Univ. in St. Louis 9



Critical Point Characterization Synthesis of Optimal Control Inputs Simulation: Optimal HVAC Operation

Original-Relaxed Equivalence
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are equivalent.

Thus, Feas(Po) ⊂ Feas(Pr), and Value(Po) > Value(Pr).

Proposition

Value(Po) = Value(Pr).

The proof follows using Berkovitz’s Chattering Lemma for switched
systems and the fact that L2 convergence of inputs implies uniform
convergence of the trajectories.

L. D. Berkovitz, Optimal Control Theory, ser. Applied Mathematical Sciences. Springer, 1974

Sampling-Based Optimal Control Synthesis ESE, Washington Univ. in St. Louis 9



Critical Point Characterization Synthesis of Optimal Control Inputs Simulation: Optimal HVAC Operation

Optimality Functions

Definition (Polak, 1997)

Consider the following optimization problem:

min{ψ(x) | x ∈ X}.
We say that θ : X → R is an optimality function of this problem if:

θ(x) ≤ 0 for each x ∈ X ; and,

if x is a minimizer of ψ, then θ(x) = 0.

For example, if X ⊂ Rn then:

θ(x) = min
‖h‖≤1

〈∇ψ(x), h〉, and θ(x) = min
h
〈∇ψ(x), h〉+ ‖h‖22,

are optimality functions.
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Original Problem Optimality Functions

Let u0 : [0, T ]→ U and x0 be its associated trajectory. Let:

θo,l(x0, u0) = min
δu(·)

∂ϕ

∂x

(
x0(T )

)
δx(T ),

subject to: δẋ(t) =
∂f

∂x

(
x0(t), u0(t)

)
δx(t)+

+
∂f

∂u

(
x0(t), u0(t)

)
δu(t),

δx(0) = 0,

u0(t) + δu(t) ∈ U , ∀t ∈ [0, T ].

We say that θo,l is the linearized, or variational, optimality function
of Po.
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Original Problem Optimality Functions

Also, let:

θo,h(x0, u0) = min
u(·)

∫ T

0
p0(t)

T
(
f
(
x0(t), u(t)

)
− f

(
x0(t), u0(t)

))
dt,

subject to: ṗ0(t) = −∂f
∂x

T (
x0(t), u0(t)

)
p0(t),

p0(T ) =
∂ϕ

∂x

(
x(T )

)
,

u(t) ∈ U , ∀t ∈ [0, T ].

We say that θo,h is the Pontryagin optimality function of Po.

Proposition

θo,h(x0, u0) = 0 ⇒ θo,l(x0, u0) = 0.
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Relaxed Problem Optimality Functions

Let:

θr,l(x0, µ0) = min
{δµt}t

∂ϕ

∂x

(
x0(T )

)
δx(T ),

subject to: δẋ(t) =

(∫
Rm

∂f

∂x

(
x0(t), u

)
dµ0,t(u)

)
δx(t)+

+

∫
Rm

f
(
x0(t), u

)
dδµt(u),

δx(0) = 0,
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(∫

Rm

∂f

∂x

T (
x0(t), u

)
dµ0(u)

)
p0(t),

p0(T ) =
∂ϕ

∂x

(
x(T )

)
,

supp(µ0,t + δµt) ⊂ U , ∀t ∈ [0, T ],∫
Rm

dδµt(u) = 0, ∀t ∈ [0, T ].

We say that θr,h is the Pontryagin optimality function of Pr.

Proposition

θr,h(x0, u0) = θr,l(x0, u0), and so are their minimizing arguments.

Sampling-Based Optimal Control Synthesis ESE, Washington Univ. in St. Louis 14



Critical Point Characterization Synthesis of Optimal Control Inputs Simulation: Optimal HVAC Operation

Idea...

1. Solve the relaxed problem using (tried and tested)
variational-based methods, where at each step we compute θr,h
to check for optimality.

2. Once we find a minimizer, synthesize an input signal that
approximates the optimal relaxed trajectory.
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Computing θr,h

Note that θr,h is a convex optimization problem. In fact, it is a
linear infinite-dimensional program.

Also note that we can rewrite θr,h as:

θr,h(x0, µ0) = min
{µ1,t}t

∫ T

0
p0(t)

T

(∫
Rm

f
(
x0(t), u

)
dµ1,t(u)+

−
∫
Rm

f
(
x0(t), u

)
dµ0,t(u)

)
dt,

subject to: supp(µ1,t) ⊂ U , ∀t ∈ [0, T ].
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Computing θr,h

Proposition

Let x ∈ Rn. Then:{∫
Rm

f(x, u) dµ(u) | supp(µ) ⊂ U
}

= co{f(x, u) | u ∈ U}.

Hence:

θr,h(x0, µ0) = min
{µ1,t}t

∫ T

0
p0(t)

T

(
z(t)−

∫
Rm
f
(
x0(t), u

)
dµ0,t(u)

)
dt,

subject to: z(t) ∈ co
{
f
(
x0(t), u

)
| u ∈ U

}
.

Computing Pontryagin-optimal points is as hard as finding a good
representation for the convex hull of f(x, ·).

Sampling-Based Optimal Control Synthesis ESE, Washington Univ. in St. Louis 18
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Sampling-Based Synthesis

Let {ui}Ni=1 ⊂ U be a set of samples. Then for each t ∈ [0, T ]:

co
{
f
(
x0(t), u

)
| u ∈ U

}
≈

≈

{
N∑
i=1

ωi(t) f
(
x0(t), ui

)
|
N∑
i=1

ωi(t) = 1, ωi(t) ≥ 0

}
.

After sampling, our classical dynamical system becomes a switched
hybrid system.

Hence, we can use the PWM-based projection method in
Vasudevan et al. (SICON, 2013) to synthesize input signals.

R. Vasudevan, H. Gonzalez, R. Bajcsy, and S. S. Sastry, “Consistent Approximations for the Optimal Control of
Constrained Switched Systems—Part 1: A Conceptual Algorithm,” Siam journal on control and optimization, vol.
51, no. 6, pp. 4463–4483, 2013
R. Vasudevan, H. Gonzalez, R. Bajcsy, and S. S. Sastry, “Consistent Approximations for the Optimal Control of
Constrained Switched Systems—Part 2: An Implementable Algorithm,” Siam journal on control and optimization,
vol. 51, no. 6, pp. 4484–4503, 2013
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Sampling-Based Synthesis Algorithm

1. Compute samples of U .

2. Iteratively solve the relaxed optimal control problem using a
gradient-based method.

3. Synthesize an approximation of the optimal relaxed input using
PWM-based projection.
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Numerical Considerations

Note that if f(x, uk) lays strictly in the relative interior of
co{f(x, u) | u ∈ {ui}i}, then its computation is irrelevant.

Use qhull to reduce the number of samples.

In large-scale problems most of the computation time is spent
calculating f

(
x0(t), ui

)
for each of the samples.

Use an `1 regularizer to force sparsity on the set {ωi(t)}i.
If smoothness is desirable, then use an `2 regularizer and a large
number of samples.
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2. Synthesis of Optimal Control Inputs

3. Simulation: Optimal HVAC Operation
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Comprehensive Building Operation

Besides controlling the HVAC unit in a building, we can make
suggestions to the occupants regarding door configuration to
improve efficiency and comfort.

s2

s3

s1

d1d2

d3

d4

h1

h2

h3

h4

Let θ ∈ {0, 1}4, where θi = 1 if i-th door is open.
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CFD Model

Heat convection-diffusion:

∂Te
∂t

(x, t)−∇x·(κ(x, θ)∇xTe(x, t))+

+ u(x) · ∇xTe(x, t) = gTe(x, t),

Stationary imcompressible
Navier-Stokes:

− 1

Re
∆xu(x) +

(
u(x) · ∇x

)
u(x)+

+∇xp(x) + α(x, θ)u(x) = gu(x),

∇ · u = 0

Initial condition:

Te(x, 0) = π0,

Boundary conditions:

Te(t, x) = 0, and

u(x) = 0, ∀x ∈ ∂Ω

R. He and H. Gonzalez, “Zoned HVAC Control via PDE-Constrained Optimization,” in Proceedings of the 2016
american control conference, 2016. arXiv: 1504.04680

R. He and H. Gonzalez, “Gradient-Based Estimation of Air Flow and Geometry Configurations in a Building Using
Fluid Dynamic Adjoint Equations,” in Proceedings of the 4th international high performance buildings conference
at purdue, 2016. arXiv: 1605.05339
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Single Zone Control

Closed doors:

target
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Open doors:
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Dual Zone Control

Closed doors:
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“There is nothing so practical as a good theory”

— Kurt Lewin
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