"What you saw is not what you get" Domain adaptation for deep learning

Kate Saenko

Successes of Deep Learning in Al

The New York Times

A Learning Advance in Artificial Intelligence Rivals Human Abilities

Deep Learning for self-driving cars

Google's DeepMind Masters Atari Games

Google Translate

English Russian Chinese (Simplified) →
Time flies like an arrow
时间过得很快像箭

Face Recognition

So is Al solved?

pedestrian detection FAIL

https://www.youtube.com/watch?v=w2pwxv8rFkU

Major limitation of deep learning

Not data efficient: Learning requires millions of labeled examples,

models do not generalize well to new domains; not like humans!

"What you saw is not what you get"

What your net is trained on

What it's asked to label

"Dataset Bias" "Domain Shift" "Domain Adaptation" "Domain Transfer"

Example: scene segmentation

Train on Cityscapes, Test on Cityscapes

Domain shift: Cityscapes to SF

Train on Cityscapes, Test on San Francisco Dashcam

No tunnels in CityScapes?...

<mark>≜</mark> driving1.mkv - VLC media player <u>M</u>edia Playback <u>A</u>udio <u>V</u>ideo Subtitle T<u>o</u>ols View <u>H</u>elp - 0 ×

Applications to different types of domain shift

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

- Show that deep models can be adapted without labels
- Propose two deep adaptation methods:
 - adversarial alignment
 - correlation alignment
- Show applications

From RGB to depth

From CAD models to real images

Background: Domain Adaptation from source to target distribution

$$D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$$

 $D_T = \{ (\mathbf{z}_j, ?), \forall j \in \{1, \dots, M\} \}$

Background: unsupervised domain adaptation

Sample re-weighting

- NO labels in target domain
- Roughly, three categories of methods
 - Sample re-weighting
 - Subspace matching
 - Deep methods

Deep alignment

B. Femando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013. B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by back propagation. In ICML 2015

How to adapt a deep network?

How to adapt a deep network?

How to adapt a deep network?

• Fine tune?

•

-Zero or few labels in target domain
- Siamese network?No paired / aligned instance examples!

Deep distribution alignment

• by minimizing distance between distributions, e.g.

Source Data Source Data Target Data CORRELATION ALignment Sun and Saenko, AAAI 2016

...or by adversarial domain alignment, e.g.

Reverse Gradient Y. Ganin and V. Lempitsky ICML 2015

Eric Tzeng UC Berkeley

Judy Hoffman UC Berkeley

Trevor Darrell UC Berkeley

Adversarial networks

Adversarial networks

Design choices in adversarial adaptation

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks, NIPS 2016

Deep domain confusion

[Tzeng ICCV15]

Adversarial Training of domain label predictor and domain confusion loss:

$$\min_{\theta_D} \mathcal{L}_D(x_S, x_T, \theta_{\text{repr}}; \theta_D)$$
$$\min_{\theta_D} \mathcal{L}_{\text{conf}}(x_S, x_T, \theta_D; \theta_{\text{repr}}).$$

 $\theta_{\rm repr}$

$$\mathcal{L}_D(x_S, x_T, \theta_{\text{repr}}; \theta_D) = -\sum_J \mathbb{1}[y_D = d] \log q_d$$
$$\mathcal{L}_{\text{conf}}(x_S, x_T, \theta_D; \theta_{\text{repr}}) = -\sum_d \frac{1}{D} \log q_d.$$

Domain Label Cross-entropy with uniform distribution

Deep domain confusion

Train a network to minimize classification loss AND confuse two domains

(cross-entropy with uniform distribution)

[Tzeng ICCV15]

Applications to different types of domain shift

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

ImageNet adapted to Caltech [Tzeng ICCV15]

Results on Cityscapes to SF adaptation

Before domain confusion

After domain confusion

Adversarial Loss Functions

 $\begin{array}{l} \textbf{Confusion loss} \quad \text{[Tzeng 2015]} \\ \max_{D} \mathbb{E}_{\mathbf{x} \sim p_{S}(\mathbf{x})} \left[\log D(M_{S}(\mathbf{x})) \right] + \mathbb{E}_{\mathbf{x} \sim p_{T}(\mathbf{x})} \left[\log(1 - D(M_{T}(\mathbf{x}))) \right] \\ \max_{M_{S}, M_{T}} \sum_{d \in \{S, T\}} \mathbb{E}_{\mathbf{x} \sim p_{d}(\mathbf{x})} \left[\frac{1}{2} \log D(M_{d}(\mathbf{x})) + \frac{1}{2} \log(1 - D(M_{d}(\mathbf{x}))) \right] \end{array}$

Minimax loss [Ganin 2015]

 $\min_{M_S, M_T} \max_{D} V(D, M_S, M_T) = \mathbb{E}_{\mathbf{x} \sim p_S(\mathbf{x})} [\log D(M_S(\mathbf{x}))] + \mathbb{E}_{\mathbf{x} \sim p_T(\mathbf{x})} [\log(1 - D(M_T(\mathbf{x})))]$

GAN loss [Goodfellow 2014]

$$\max_{D} \mathbb{E}_{\mathbf{x} \sim p_{S}(\mathbf{x})}[\log D(M_{S}(\mathbf{x}))] + \mathbb{E}_{\mathbf{x} \sim p_{T}(\mathbf{x})}[\log(1 - D(M_{T}(\mathbf{x})))]$$
 "stronger gradients"
$$\max_{M_{T}} \mathbb{E}_{\mathbf{x} \sim p_{T}(\mathbf{x})}[\log D(M_{T}(\mathbf{x}))].$$

Adversarial Discriminative Domain Adaptation (ADDA) (in submission)

ADDA: Adaptation on digits

Method	$MNIST \rightarrow USPS$ $7 3 \rightarrow 05$	$USPS \rightarrow MNIST$	$\begin{array}{c} \text{SVHN} \rightarrow \text{MNIST} \\ \hline 14 \\ \hline 55 \\ \hline 57 \\ \hline 7 \\ \hline 7 \\ \hline 3 \\ \hline \end{array}$
Source only	0.752 ± 0.016	0.571 ± 0.017	0.601 ± 0.011
Gradient reversal	0.771 ± 0.018	0.730 ± 0.020	0.739 [16]
Domain confusion	0.791 ± 0.005	0.665 ± 0.033	0.681 ± 0.003
CoGAN	0.912 ± 0.008	0.891 ± 0.008	did not converge
ADDA (Ours)	0.894 ± 0.002	0.901 ± 0.008	0.760 ± 0.018

Applications to different types of domain shift

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

ADDA: Adaptation on RGB-D

Tı	rain d	on R(GΒ				A Carl		1.											
Т	est o	n de	pth			A P						1								
	bathtub	bed	bookshelf	box	chair	counter	desk	door	dresser	garbage bin	lamp	monitor	night stand	pillow	sink	sofa	table	television	toilet	overall
# of instances	19	96	87	210	611	103	122	129	25	55	144	37	51	276	47	129	210	33	17	2401
Source only ADDA (Ours)	0.000 0.000	0.010 0.146	0.011 0.046	0.124 0.229	0.188 0.344	0.029 0.447	0.041 0.025	0.047 0.023	0.000 0.000	0.000 0.018	0.069 0.292	0.000 0.081	0.039 0.020	0.587 0.297	0.000 0.021	0.008 0.116	0.010 0.143	0.000 0.091	0.000 0.000	0.139
Train on target	0.105	0.531	0.494	0.295	0.619	0.573	0.057	0.636	0.120	0.291	0.576	0.189	0.235	0.630	0.362	0.248	0.357	0.303	0.647	0.468

ADDA: Adaptation on RGB-D

(in submission)

Train on target

True label

stand pillow sink sofa table television toilet -

Applications to different types of domain shift

From dataset to dataset

From simulated to real control

From RGB to depth

From CAD models to real images

Adapting Deep Visuomotor Representations with Weak Pairwise Constraints

Eric Tzeng₁, Coline Devin₁, Judy Hoffman₁, Chelsea Finn₁, Pieter Abbeel₁, Sergey Levine₁, Kate Saenko₂, Trevor Darrell₁

> 1 University of California, Berkeley 2 Boston University

From simulation to real world control [Tzeng, Devin, et al 16]

Weak pairwise constraints

[Tzeng, Devin, et al 16]

Robotic task: place rope on scale

[Tzeng, Devin, et al 16]

Method	# Sim	# Real (unlabeled	l) Success rate
Synthetic only	4000	0	$38.1\% \pm 8\%$
Autoencoder (100)	0	100	$28.6\% \pm 25\%$
Autoencoder (500)	0	500	$33.2\% \pm 15\%$
Domain alignment with randomly	4000	100	$33.3\% \pm 16\%$
assigned pairs			
Domain alignment with weakly	4000	100	$76.2\%\pm16\%$
supervised pairwise constraints			
Oracle	0	500 (labeled)	$71.4\% \pm 14\%$

Applications to different types of domain shift

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

Domain Adaptation via Correlation Alignment

Baochen Sun Microsoft Xingchao Peng Boston University

Deep CORAL: Correlation Alignment for Deep Domain Adaptation

[Sun 2016]

Deep CORAL: Correlation Alignment for Deep Domain Adaptation

[Sun 2016]

Generative CORAL Network

Synthetic to real adaptation for object recognition

Train on synthetic

Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks

Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks

Summary

- Deep models can be adapted to new domains without labels
- Proposed two deep feature alignment methods:
 - adversarial alignment
 - correlation alignment
- Many potential applications

From simulated to real control

From RGB to depth

From CAD models to real images

Thank you

References

- Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, Simultaneous Deep Transfer Across Domains and Tasks, ICCV 2015
- Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko, Trevor Darrell, Adapting Deep Visuomotor Representations with Weak Pairwise Constraints, WAFR 2016
- Baochen Sun, Jiashi Feng, Kate Saenko, Return of Frustratingly Easy Domain Adaptation, AAAI 2016
- Baochen Sun, Kate Saenko, Deep CORAL: Correlation Alignment for Deep Domain Adaptation, TASK-CV Workshop at ICCV 2016
- Adversarial Discriminative Domain Adaptation, in submission
- Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks, in submission