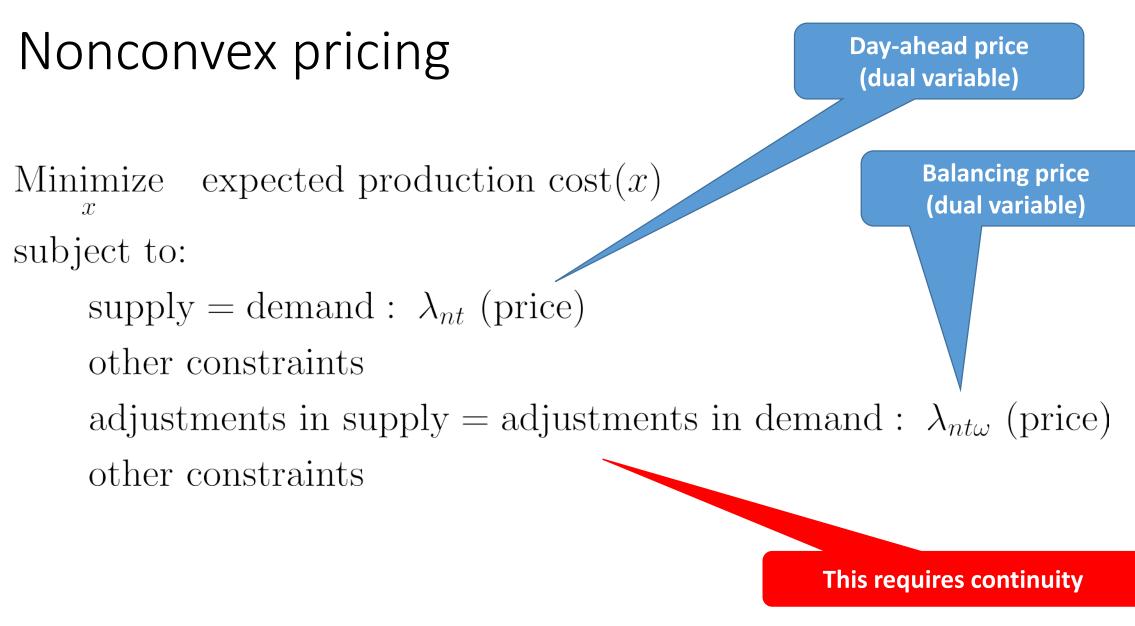
Pricing Electricity through a Stochastic Non-Convex Market-Clearing Model

Antonio J. Conejo, 2017 THE OHIO STATE UNIVERSITY

What

Nonconvex pricing



Nonconvex pricing

- 1. Current industry practice
- 2. An unorthodox approach
- 3. Examples
- 4. Conclusions
- 5. Reading

Current industry practice

- 1. Solve a MILP problem to clear the market & compute the optimal value of the binary variables.
- 2. Obtain an LP problem from the MILP problem by fixing the binary variable to their optimal values, solve it, & compute marginal prices (dual variables).

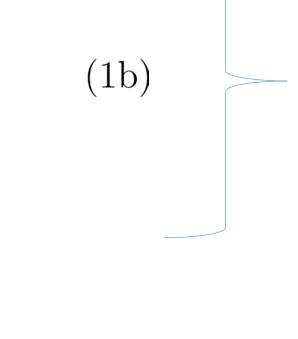
Current industry practice

- 3. Use these prices to pay producers and charge consumers.
- 4. If a producer does not recover cost, assign to it the minimum uplift required to recover cost, and socialize such uplift.

Current industry practice Pool auction: computing binary variables

$$\begin{array}{ll} \text{Minimize} \quad c^{\mathrm{T}} \begin{bmatrix} x \\ y \end{bmatrix} \\ \text{s. t.} \quad A \begin{bmatrix} x \\ y \end{bmatrix} \geq b \\ x \geq 0, x \in \mathbb{R}^{n}, y \in \mathbb{B}^{o} \\ c \in \mathbb{R}^{n+o}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times (n+o)} \end{array}$$

Note that
$$A \begin{bmatrix} x \\ y \end{bmatrix} \ge b$$
 includes $y \le 1$



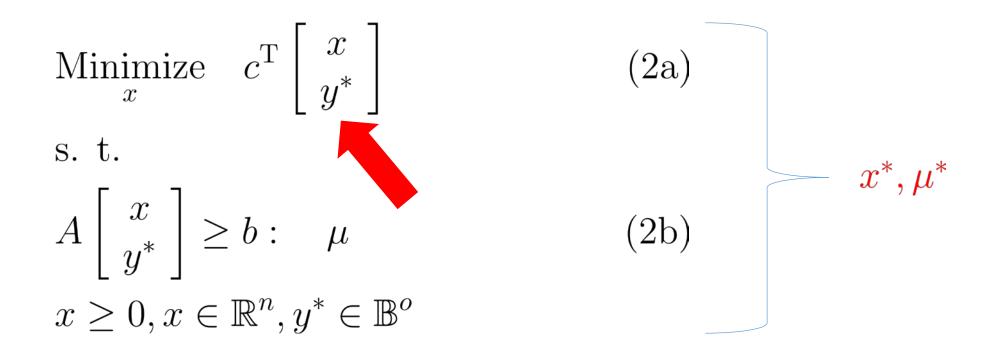
(1a)

February 15, 2017

MILP

 y^*

Current industry practice Pool auction: computing productions & prices



LP

Current industry practice Pool auction: cost recovery?

$$R_i(x_i^*, y_i^*, \mu^*) - C_i(x_i^*, y_i^*) \ge 0 \quad ?$$

Yes: OK
No:
$$\text{uplift}_{i} = C_{i}(x_{i}^{*}, y_{i}^{*}) - R_{i}(x_{i}^{*}, y_{i}^{*}, \mu^{*})$$

Note that $A \begin{bmatrix} y \end{bmatrix}$ menudes $g \ge 1$

$$\begin{array}{ll} \text{Minimize} \quad c^{\mathrm{T}} \begin{bmatrix} x \\ y \end{bmatrix} & (3a) \\ \text{s. t.} \\ A \begin{bmatrix} x \\ y \end{bmatrix} \ge b : \quad \mu \\ x \ge 0, x \in \mathbb{R}^{n}, y \ge 0, y \in \mathbb{R}^{o} \\ \text{Note that } A \begin{bmatrix} x \\ x \end{bmatrix} \ge b \quad \text{includes} \quad u \le 1 \end{array}$$

LP

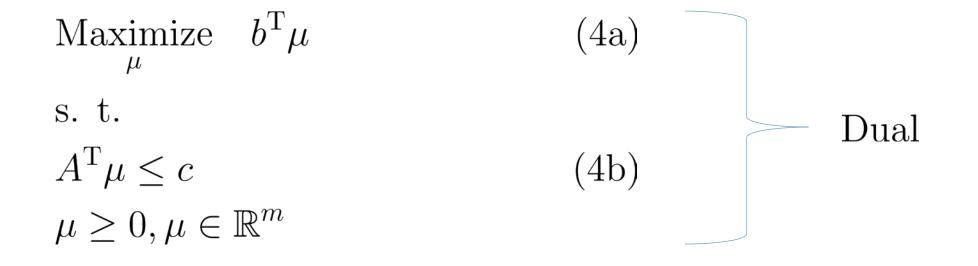
Relaxation

A. J. Conejo

11

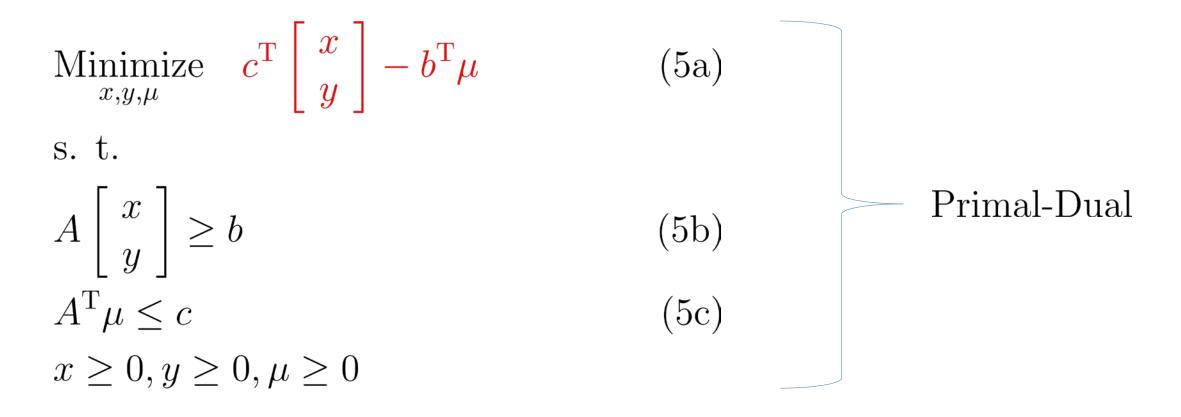
LP

Current industry practice Unorthodox approach: dual

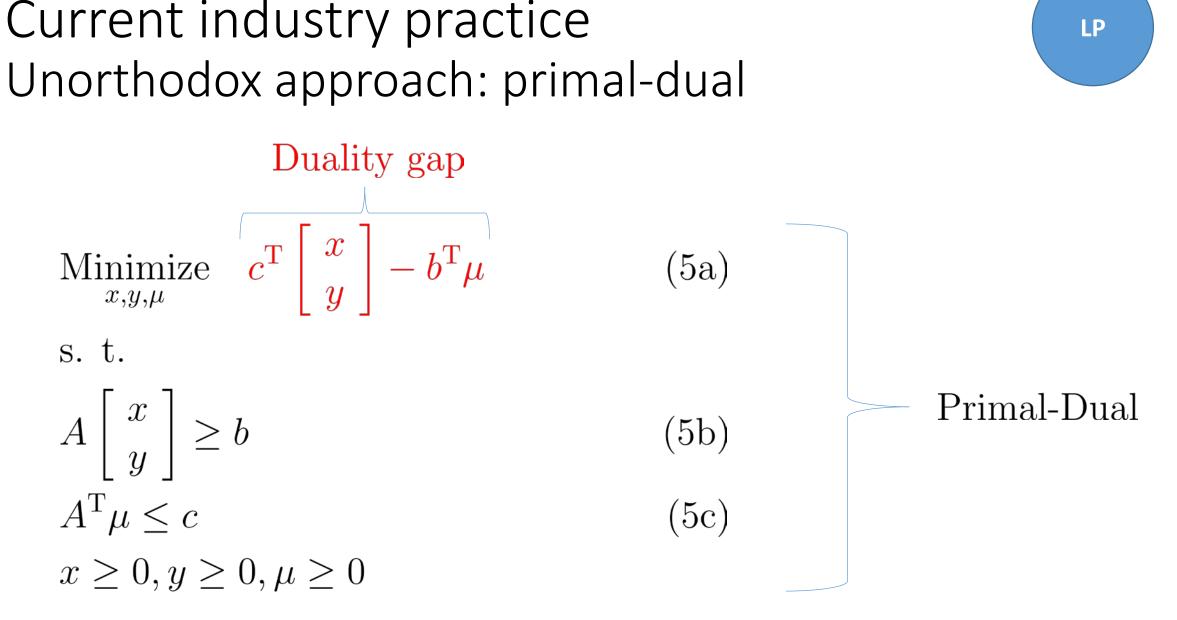


A. J. Conejo

Current industry practice Unorthodox approach: primal-dual



LP

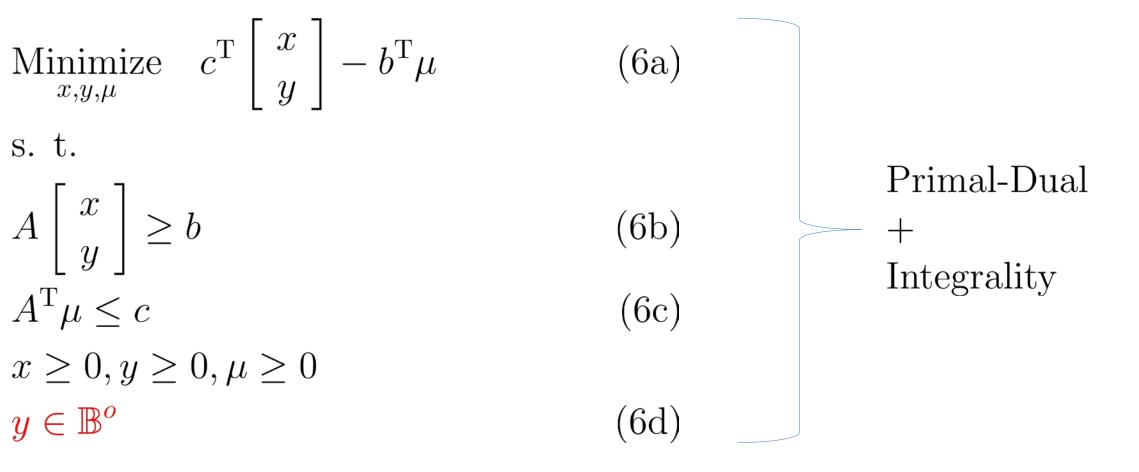


Current industry practice Unorthodox approach: primal-dual

Problem (5) above allows including additional constraints involving both primal & dual variables.

This is done at the cost of not achieving a zero duality gap and not being fully equivalent to the original problem.

Current industry practice Unorthodox approach: primal-dual + integrality



A. J. Conejo

15

MILP

$$\begin{array}{c} \text{Current industry practice} \\ \text{Unorthodox approach: + integrality + cost recovery} \\ \hline \text{Minimize} \quad c^{\mathrm{T}} \begin{bmatrix} x \\ y \end{bmatrix} - b^{\mathrm{T}} \mu \qquad (7a) \\ \text{s. t.} \\ A \begin{bmatrix} x \\ y \end{bmatrix} \ge b \qquad (7b) \\ A^{\mathrm{T}} \mu \le c \qquad (7c) \\ x \ge 0, y \ge 0, \mu \ge 0 \\ y \in \mathbb{B}^{o} \qquad (7d) \\ R_{i}(x_{i}, y_{i}, \mu) - C_{i}(x_{i}, y_{i}) \ge 0 \quad \forall i \qquad (7e) \end{array}$$

Current industry practice Unorthodox approach $\underset{x,y,\mu}{\text{Minimize}} \quad c^{\mathrm{T}} \begin{bmatrix} x \\ y \end{bmatrix} - b^{\mathrm{T}}\mu$ s. t. $A\left[\begin{array}{c} x\\ y\end{array}\right] \ge b$ $A^{\mathrm{T}}\mu \leq c$ $x \ge 0, y \ge 0, \mu \ge 0$ $y \in \mathbb{B}^{o}$ $R_i(x_i, y_i, \mu) - C_i(x_i, y_i) \ge 0 \quad \forall i$

(7a)(7b)(7c)(7d)(7e)

 $\begin{array}{c} x^*, y^*, \mu^* \\ \end{array}$ Duality gap eq 0

MINLP

Current industry practice Unorthodox approach: primal-dual

The solution of (7) is as close as possible to that of the original problem: the duality gap is minimum.

Problem (7) guarantees that both primal & dual constraints are satisfied.

Nonconvex pricing in an electricity pool Primal-dual

Minimize
 Ξ_p, Ξ_d Primal o.f. – Dual o.f.subject to:Primal constraintsDual constraintsDual constraintsIntegrality constraintsCost recovery constraints

Both stochastic and deterministic (10a)(10b)(10c)(10d)(10e)

The aim is to obtain a set of uniform revenue-adequate prices λ_{nt} (day-ahead market) and $\lambda_{nt\omega}$ (real-time market).

In other words, to provide appropriate incentives to the producers by ensuring that, if dispatched, they would not experience losses.

Cost recovery is enforced only at the day-ahead market stage:

$$\sum_{t} \left((\lambda_{nt} - C_i) P_{it} - C_{it}^{SU} \right) \ge 0 \quad \forall i$$

Cost recovery is enforced in expectation:

$$\sum_{t} \left[(\lambda_{nt} - C_i) P_{it} - C_{it}^{SU} + \sum_{\omega} \pi_{\omega} (\lambda_{nt\omega} / \pi_{\omega} - C_i) (r_{it\omega}^{U} - r_{it\omega}^{D}) \right] \ge 0, \forall i$$

Cost recovery is enforced per scenario:

$$\sum_{t} \left[(\lambda_{nt} - C_i) P_{it} - C_{it}^{SU} + (\lambda_{nt\omega} / \pi_{\omega} - C_i) (r_{it\omega}^{U} - r_{it\omega}^{D}) \right] \ge 0, \forall \omega, \forall i$$

These constraints ensure the nonnegativity of the profit of each producer.

Note that the problem above, including these nonlinear constraints, is a mixed integer nonlinear programming problem (MINLP).

MINLPs are in general hard to solve, and no off-theshelf solver is available to guarantee convergence or optimality.

For computational tractability, these constraints can be (approximatelly) linearized.

Acronyms

Con Conventional Method - No Uplift

- **U** Conventional Method With Uplift
- **CR** Pricing approach with cost recovery at the dayahead market stage.
- **AR** Pricing approach with average cost recovery.
- ${\bf SR}~$ Pricing approach with cost recovery per scenario.

Example

Example: Data

Line 1 P_2 P_1 WP Ę time 2 tines L_3 P_3

Inelastic demand Two period No congestion

Example: Data

Unit	$K_i^{ m SU}$	\widetilde{C}_i	P_i^{\max}	P_i^{\min}
1	101.1	20.03	95	10
2	103.2	50.06	100	10
3	2001.06	100.01	105	10

Table 1: Data of generating units.

Table 2: Wind scenarios and Load profile [MW]

Period	High	Low	L_3
t_1	59	13	110
t_2	111	17	280

Example: Results

0.	Day-anco	tu chici ș.	y prices $[\Psi]$
_	method	λ_{t_1}	λ_{t_2}
_	Con	20.03	70.046
	CR	33.85	120.02
	AR	33.85	102.9
	SR	33.85	105.4

Table 3: Day-ahead energy prices [\$/MWh]

Example: Results

Table 4: Consumer payment, expected cost and duality gap in [\$]

	CR	AR	SR	U
Consumer payment	37328.9	33134.1	32538.1	25315
Expected cost	13044.5	13084.46	13084.46	13044.5
Gap	2091.86	1528.8	1607.44	_

Case Study

RTS Data

Table 1: Characteristics of the Generating Units							
	U_{76}	U_{50}	U_{155}	U_{50}	U_{197}	U_{50}	U_{400}
Node	2	7	15, 18	15	21	22	23
P_i^{\max}	76	50	155	50	197	50	400
P_i^{\min}	15	15	55	15	69	15	100
C_i^{SU}	400	100	320	100	300	100	1000
C_i	13.89	0	10.68	0	11.09	0	5.53

RTS Data

Table 2: Total demand in [MW]							
t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8
441.1	481	482	483	490	1021.6	1132	1097
t_9	t_{10}	t_{11}	t_{12}	t_{13}	t_{14}	t_{15}	t_{16}
960.5	910.2	910	941.2	943	960	970	1031
t_{17}	t_{18}	t_{19}	t_{20}	t_{21}	t_{22}	t_{23}	t_{24}
1123	1130	1112	1101	998	930.1	780	440

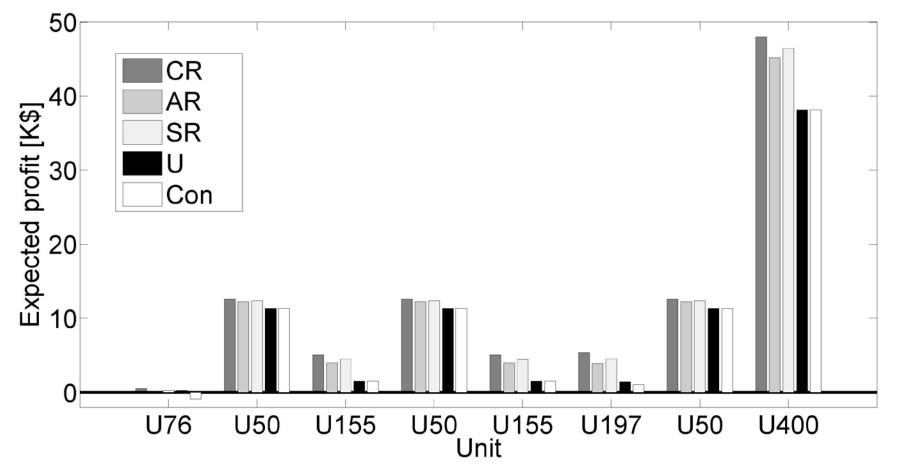
Table 3: Demand location							
Demand D_1 D_2 D_3 D_4 D_5							
Node	1	4	13	14	20		
Share %	33.5	18.9	14.9	16.2	16.5		

RTS Data

Table 4: Dimension of the proposed models							
	CR	AR	SR	U			
No. of continuous variables	93368	96968	96968	27600			
No. of integer variables	1560	5160	5160	1176			
No. of total variables	94928	102128	102128	28776			
No. of constraints	95361	108561	108585	65384			
Computation time (s)	22705	14231	1624	57			

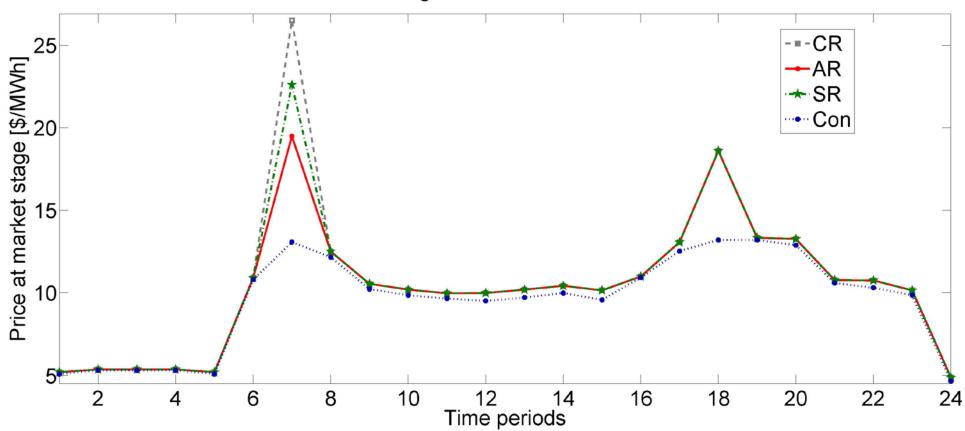
RTS Results

Figure 1: Expected Profit (RTS system).



RTS Results

Figure 2: Energy prices at node 2 under different approaches (RTS system).



Marginal Prices at Node 2

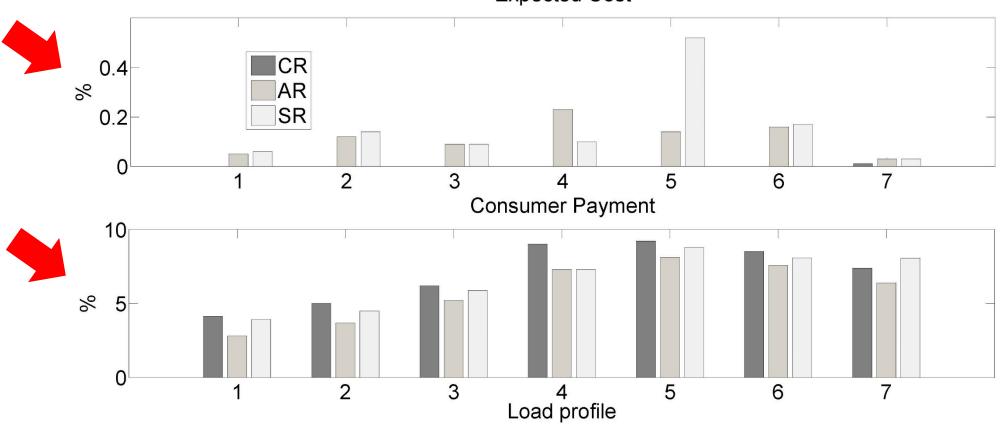
RTS Results

Table 5: Consumer payment, expected cost and duality gap for the RTS system [\$].

	CR	AR	SR	U
Consumers payment	2.42e + 05	2.34e + 05	2.38e + 05	2.17e + 05
Expected cost	$127,\!066$	$127,\!169$	$127,\!153$	$127,\!066$
Gap	288.24	384.80	371.10	_

RTS Results

Figure 3: Cost increase in percent (with respect to original problem), and consumer payment increase (with respect to payment from the uplift method) in percent for different load profiles (RTS system)



Expected Cost

Figure 4: LMPs at t_{18} (top) and t_{21} (bottom) obtained by the different approaches.

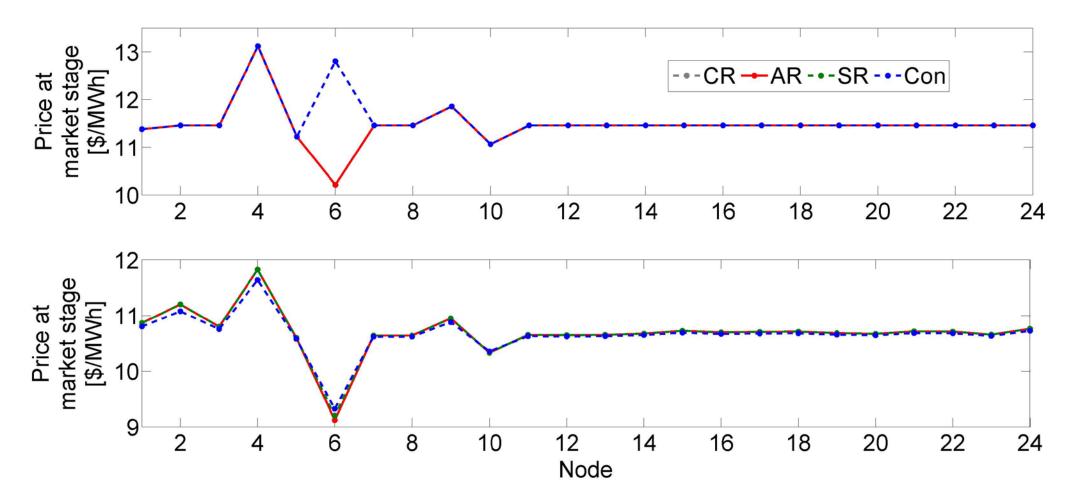
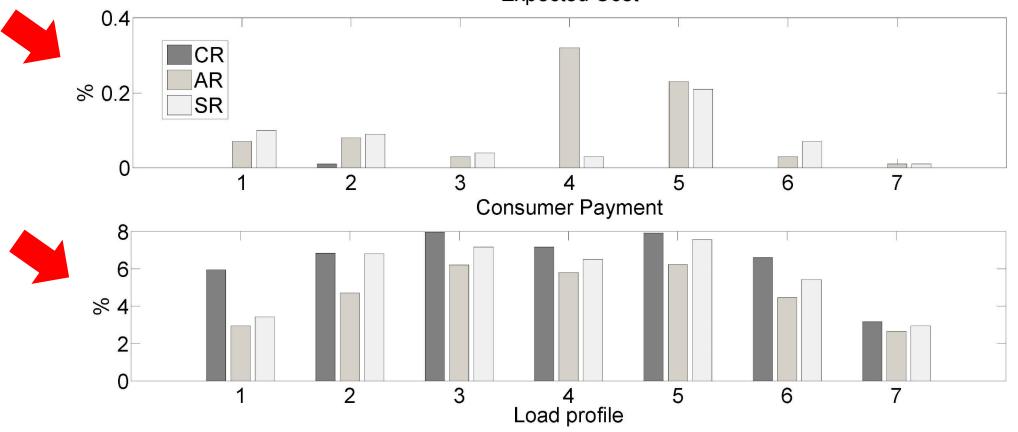


Table 7: Consumer payment, expected cost and duality gap for the RTS system with congestion [\$].

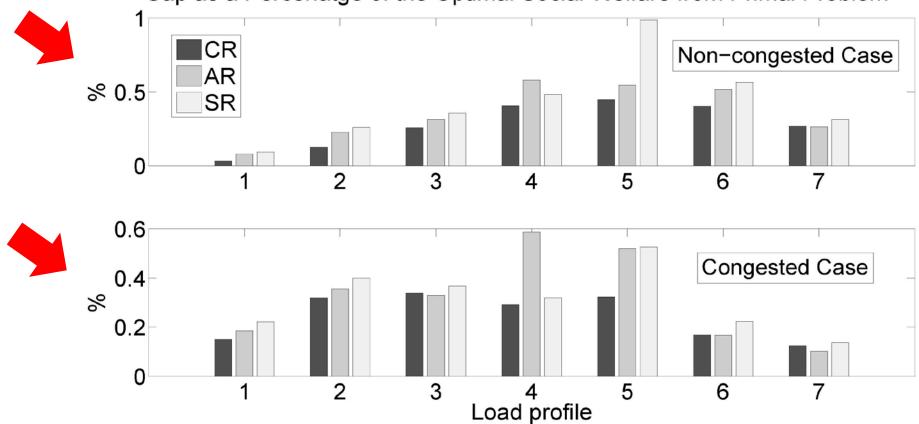
	CR	AR	SR	U
Consumers payment	286903.5	285342.1	286100.8	277298.1
Expected cost	$170,\!257$	$170,\!271$	$170,\!273$	$170,\!257$
Gap	211.58	174.27	230.91	—

Figure 5: Cost increase in percent (with respect to original problem), and consumer payment (with respect to payment from the uplift method) in percent for different load profiles (RTS congestion case)



Expected Cost

Figure 6: Social welfare gap as a pecentage of the optimal social welfare obtained from the primal problem for different load profiles



Gap as a Percenatge of the Optimal Social Welfare from Primal Problem

Concluding remarks

Concluding remarks Good proposal!

Support market outcomes (no producer willing to leave)
Slightly deviates from marginal prices if integrality is relaxed

No computational overburden!

No non-uniform uplifts!

Concluding remarks "Drawback"

Resulting prices not in the demand curve, but same with uplifts!

Self-scheduling profits might be higher for some producers... lost opportunity profits.

Reading

Ruiz, C.; Conejo, A.J.; Gabriel, S.A., "Pricing Non-Convexities in an Electricity Pool," Power Systems, IEEE Transactions on, vol.27, no.3, pp.1334-1342, Aug. 2012.

http://dx.doi.org/10.1109/TPWRS.2012.2184562

F. Abbaspourtorbati; A. Conejo; J. Wang; R. Cherkaoui, "Pricing Electricity through a Stochastic Non-Convex Market-Clearing Model," in IEEE Transactions on Power Systems, in press.

http://dx.doi.org/10.1109/TPWRS.2016.2569533

