SHARED INFORMATION

Prakash Narayan

with

Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe

Outline

Two-terminal model: Mutual information

Operational meaning in:

- Channel coding: channel capacity
- Lossy source coding: rate distortion function
- Binary hypothesis testing: Stein's lemma

Interactive communication and common randomness

- Two-terminal model: Mutual information
- Multiterminal model: Shared information

Applications

Outline

Two-terminal model: Mutual information

Operational meaning in:

- Channel coding: channel capacity
- Lossy source coding: rate distortion function
- Binary hypothesis testing: Stein's lemma

Interactive communication and common randomness

Applications

Mutual Information

Mutual information is a measure of mutual dependence between two rvs.

Mutual Information

Mutual information is a measure of mutual dependence between two rvs.

Let X_1 and X_2 be \mathbb{R} -valued rvs with joint probability distribution $P_{X_1X_2}$.

The **mutual information** between X_1 and X_2 is

$$I(X_1 \wedge X_2) = \begin{cases} \mathbb{E}_{P_{X_1 X_2}} \left[\log \frac{dP_{X_1 X_2}}{dP_{X_1} \times P_{X_2}} (X_1, X_2) \right], & \text{if } P_{X_1 X_2} \prec P_{X_1} \times P_{X_2} \\ \infty, & \text{if } P_{X_1 X_2} \not\prec P_{X_1} \times P_{X_2} \end{cases}$$
$$= D\left(P_{X_1 X_2} \mid\mid P_{X_1} \times P_{X_2} \right). \quad \text{(Kullback - Leibler divergence)}$$

When X_1 and X_2 are finite-valued,

$$I(X_{1} \wedge X_{2}) = H(X_{1}) + H(X_{2}) - H(X_{1}, X_{2})$$

= $H(X_{1}) - H(X_{1} | X_{2}) = H(X_{2}) - H(X_{2} | X_{1})$
= $H(X_{1}, X_{2}) - \left[H(X_{1} | X_{2}) + H(X_{2} | X_{1})\right].$

Channel Coding

Let \mathcal{X}_1 and \mathcal{X}_2 be finite alphabets, and $W: \mathcal{X}_1 \to \mathcal{X}_2$ be a stochastic matrix.

Discrete memoryless channel (DMC):

$$W^{(n)}(x_{21},\ldots,x_{2n} \mid x_{11},\ldots,x_{1n}) = \prod_{i=1}^{n} W(x_{2i} \mid x_{1i}).$$

Channel Capacity

Goal: Make code rate $\frac{1}{n} \log M$ as large as possible while keeping

$$\max_{m} P(\phi(X_{21},\ldots,X_{2n}) \neq m \mid f(m))$$

to be small, in the asymptotic sense as $n \to \infty$.

[C.E. Shannon, 1948]

Channel capacity
$$C = \max_{P_{X_1}: P_{X_2|X_1} = W} I(X_1 \wedge X_2).$$

Lossy Source Coding

Let $\{X_{1t}\}_{t=1}^{\infty}$ be an \mathcal{X}_1 -valued i.i.d. source.

Distortion measure:

$$d((x_{11},\ldots,x_{1n}),(x_{21},\ldots,x_{2n})) = \frac{1}{n}\sum_{i=1}^{n}d(x_{1i},x_{2i}).$$

Rate Distortion Function

Goal: Make (compression) code rate $\frac{1}{n} \log J$ as small as possible while keeping

$$P\left(\frac{1}{n}\sum_{i=1}^{n}d\left(X_{1i}, X_{2i}\right) \leq \Delta\right)$$

to be large, in the asymptotic sense as $n \to \infty$.

[Shannon, 1948, 1959]

Rate distortion function $R\left(\Delta\right) = \min_{P_{X_2|X_1}: \mathbb{E}[d(X_1, X_2)] \leq \Delta} I\left(X_1 \wedge X_2\right).$

Simple Binary Hypothesis Testing

Let $\{(X_{1t}, X_{2t})\}_{t=1}^{\infty}$ be an $\mathcal{X}_1 \times \mathcal{X}_2$ -valued i.i.d. process generated according to

$$H_0: P_{X_1X_2}$$
 or $H_1: P_{X_1} \times P_{X_2}$.

Test:

Decides
$$H_0$$
 w.p. $T(0 \mid x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n})$,
 H_1 w.p. $T(1 \mid x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n}) = 1 - T(0 \mid \dots)$.

Stein's lemma [H. Chernoff, 1956]: For every $0 < \epsilon < 1$,

$$\lim_{n} -\frac{1}{n} \log \inf_{T: P_{H_0}(T \text{ says } H_0) \ge 1-\epsilon} P_{H_1}(T \text{ says } H_0)$$

 $= D(P_{X_1X_2} || P_{X_1} \times P_{X_2}) = I(X_1 \wedge X_2).$

Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

- Two-terminal model: Mutual information
- Multiterminal model: Shared information

Applications

Multiterminal Model

- Set of terminals = $\mathcal{M} = \{1, \ldots, m\}$.
- ► X₁,..., X_m are finite-valued rvs with known joint distribution P_{X1...Xm} on X₁ × ··· × X_m.
- Terminal $i \in \mathcal{M}$ observes data X_i .
- Multiple rounds of interactive communication on a noiseless channel of unlimited capacity; all terminals hear all communication.

Interactive Communication

Interactive communication

- \blacktriangleright Assume: Communication occurs in consecutive time slots in r rounds.
- The corresponding rvs representing the communication are

 $\mathbf{F} = \mathbf{F}(X_1, \dots, X_m) = (F_{11}, \dots, F_{1m}, F_{21}, \dots, F_{2m}, \dots, F_{r1}, \dots, F_{rm})$

-
$$F_{11} = f_{11}(X_1), \ F_{12} = f_{12}(X_2, F_{11}), \ \dots$$

-
$$F_{ji} = f_{ji}(X_i; \text{ all previous communication}).$$

Simple communication: $\mathbf{F} = (F_1, \dots, F_m), \quad F_i = f_i(X_i), \ 1 \le i \le m.$

A. Yao, "Some complexity questions related to distributive computing," Proc. Annual Symposium on Theory of Computing, 1979.

Applications

- Data exchange: Omniscience
- Signal recovery: Data compression
- Function computation
- Cryptography: Secret key generation

WatanExample: Function Computation

[S. Watanabe]

- ▶ $X_{11}, X_{12}, X_{21}, X_{22}$ are mutually independent (0.5, 0.5) bits.
- ▶ Terminals 1 and 2 wish to compute:

$$G = g(X_1, X_2) = \mathbb{1}\Big((X_{11}, X_{12}) = (X_{21}, X_{22})\Big).$$

• Simple communication: $\mathbf{F} = (F_1 = (X_{11}, X_{12}), F_2 = (X_{21}, X_{22})).$

- Communication complexity: $H(\mathbf{F}) = 4$ bits.
- No privacy: Terminal 1 or 2, or an observer of \mathbf{F} , learns all the data X_1, X_2 .

WatanExample: Function Computation

An interactive communication protocol:

$$- \mathbf{F} = \left(F_{11} = (X_{11}, X_{12}), F_{12} = G\right).$$

- Complexity: $H(\mathbf{F}) = 2.81$ bits.

 Some privacy: Terminal 2, or an observer of F, learns X₁; Terminal 1, or an observer of F, either learns X₂ w.p. 0.25 or w.p. 0.75 that X₂ differs from X₁.

WatanExample: Function Computation

An interactive communication protocol:

- $\mathbf{F} = \left(F_{11} = (X_{11}, X_{12}), F_{12} = G\right).$
- Complexity: $H(\mathbf{F}) = 2.81$ bits.
- Some privacy: Terminal 2, or an observer of F, learns X₁; Terminal 1, or an observer of F, either learns X₂ w.p. 0.25 or w.p. 0.75 that X₂ differs from X₁.

\boldsymbol{i} Can a communication complexity of 2.81 bits be bettered ?

Related Work

- Exact function computation
 - Yao '79: Communication complexity.
 - Gallager '88: Algorithm for parity computation in a network.
 - Giridhar-Kumar '05: Algorithms for computing functions over sensor networks.
 - Freris-Kowshik-Kumar '10: Survey: Connectivity, capacity, clocks, computation in large sensor networks.
 - Orlitsky-El Gamal '84: Communication complexity with secrecy.
- Information theoretic function computation
 - Körner-Marton '79: Minimum rate for computing parity.
 - Orlitsky-Roche '01: Two terminal function computation.
 - Nazer-Gastpar '07: Computation over noisy channels.
 - Ma-Ishwar '08: Distributed source coding for interactive computing.
 - Ma-Ishwar-Gupta '09: Multiround function computation in colocated networks.
 - Tyagi-Gupta-Narayan '11: Secure function computation.
 - Tyagi-Watanabe '13, '14 Secrecy generation, secure computing.
- Compressing interactive communication
 - Schulman '92: Coding for interactive communication.
 - Braverman-Rao '10: Information complexity of communication.
 - Kol-Raz '13, Heupler '14: Interactive communication over noisy channels.

Mathematical Economics: Mechanism Design

 Thomas Marschak and Stefan Reichelstein,
 "Communication requirements for individual agents in networks and hierarchies,"
 in The Economics of Informational Decentralization: Complexity, Efficiency

and Stability: Essays in Honor of Stanley Reiter, John O. Ledyard, Ed., Springer, 1994.

 Kenneth R. Mount and Stanley Reiter, Computation and Complexity in Economic Behavior and Organization, Cambridge U. Press, 2002.

Courtesy: Demos Teneketzis

Common Randomness

For $0 \le \epsilon < 1$, given interactive communication **F**, a rv $L = L(X_1, \ldots, X_m)$ is ϵ -CR for the terminals in \mathcal{M} using **F**, if there exist *local estimates*

$$L_i = L_i(X_i, \mathbf{F}), i \in \mathcal{M},$$

of L satisfying

$$P(L_i = L, i \in \mathcal{M}) \geq 1 - \epsilon.$$

Common Randomness

Examples:

- Data exchange: Omniscience: $L = (X_1, \ldots, X_m)$.
- ▶ Signal recovery: Data compression: $L \supseteq X_{i^*}$, for some fixed $i^* \in \mathcal{M}$.
- Function computation: $L \supseteq g(X_1, \ldots, X_m)$ for a given g.
- Cryptography: Secret CR, i.e., secret key: L with $I(L \land \mathbf{F}) \cong 0$.

A Basic Operational Question

; What is the maximal CR, as measured by $H(L|\mathbf{F})$, that can be generated by a given interactive communication \mathbf{F} for a distributed processing task ?

A Basic Operational Question

i What is the *maximal* CR, as measured by $H(L|\mathbf{F})$, that can be generated by a *given* interactive communication \mathbf{F} for a distributed processing task ?

Answer in two steps:

- Fundamental structural property of interactive communication
- ▶ Upper bound on amount of CR achievable with interactive communication.

Shall start with the case of m = 2 terminals.

Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár] For interactive communication \mathbf{F} of the Terminals 1 and 2 observing data X_1 and X_2 , respectively,

$$I(X_1 \wedge X_2 | \mathbf{F}) \leq I(X_1 \wedge X_2).$$

In particular, independent rvs X_1, X_2 remain so upon conditioning on an interactive communication.

Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]

For interactive communication ${\bf F}$ of the Terminals 1 and 2 observing data X_1 and $X_2,$ respectively,

$$I(X_1 \wedge X_2 | \mathbf{F}) \leq I(X_1 \wedge X_2).$$

In particular, independent rvs X_1, X_2 remain so upon conditioning on an interactive communication.

Proof: For interactive communication $\mathbf{F} = (F_{11}, F_{12}, \dots, F_{r1}, F_{r2})$,

$$I(X_1 \wedge X_2) = I(X_1, F_{11} \wedge X_2)$$

$$\geq I(X_1 \wedge X_2 | F_{11})$$

$$= I(X_1 \wedge X_2, F_{12} | F_{11})$$

$$\geq I(X_1 \wedge X_2 | F_{11}, F_{12}),$$

followed by iteration.

An Equivalent Form

For interactive communication ${\bf F}$ of Terminals 1 and $2{:}$

 $H(\mathbf{F}) \geq H(\mathbf{F}|X_1) + H(\mathbf{F}|X_2).$

Upper Bound on CR for Two Terminals

Using

- L is ϵ -CR for Terminals 1 and 2 with interactive communication **F**; and - $H(\mathbf{F}) \geq H(\mathbf{F}|X_1) + H(\mathbf{F}|X_2)$,

we get

$$H(L|\mathbf{F}) \leq H(X_1, X_2) - \left[H(X_1|X_2) + H(X_2|X_1)\right] + 2\nu(\epsilon),$$

where $\lim_{\epsilon \to 0} \nu(\epsilon) = 0$.

Maximum CR for Two Terminals: Mutual Information

Lemma: [I. Csiszár - P. Narayan] Let L be any ϵ -CR for Terminals 1 and 2 observing data X_1 and X_2 , respectively, achievable with interactive **F**. Then

$$H(L|\mathbf{F}) \lesssim I(X_1 \wedge X_2) = D(P_{X_1X_2}||P_{X_1} \times P_{X_2}).$$

Remark: When $\{(X_{1t}, X_{2t})\}_{t=1}^{\infty}$ is an $\mathcal{X}_1 \times \mathcal{X}_2$ -valued i.i.d. process, the upper bound is attained.

Interactive Communication for $m \ge 2$ Terminals

Theorem 1: [I. Csiszár-P. Narayan]

For interactive communication \mathbf{F} of the terminals $i \in \mathcal{M} = \{1, \dots, m\}$, with Terminal i observing data X_i ,

$$H\left(\mathbf{F}\right) \geq \sum_{B \in \mathcal{B}} \lambda_B H\left(\mathbf{F} | X_{B^c}\right)$$

for every family $\mathcal{B} = \{B \subsetneq \mathcal{M}, B \neq \emptyset\}$ and set of weights ("fractional partition")

$$\lambda \triangleq \bigg\{ 0 \le \lambda_B \le 1, \ B \in \mathcal{B}, \ \text{ satisfying } \sum_{B \in \mathcal{B}: B \ni i} \lambda_B = 1 \ \forall \ i \in \mathcal{M} \bigg\}.$$

Equality holds if X_1, \ldots, X_m are mutually independent.

Special case of:

M. Madiman and P. Tetali, "Information inequalities for joint distributions, with interpretations and applications," IEEE Trans. Inform. Theory, June 2010.

CR for $m \ge 2$ Terminals: A Suggestive Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication \mathbf{F} of the terminals $i \in \mathcal{M} = \{1, \dots, m\}$, with Terminal *i* observing data X_i ,

 $\left(\mathbf{m} = \mathbf{2} : H(\mathbf{F}) \geq H(\mathbf{F}|X_1) + H(\mathbf{F}|X_2) \Leftrightarrow I(X_1 \wedge X_2|\mathbf{F}) \leq I(X_1 \wedge X_2)\right)$

$$H(X_1, \dots, X_m | \mathbf{F}) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B | X_{B^c}, \mathbf{F})$$

$$\leq H(X_1, \dots, X_m) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B | X_{B^c}).$$

An Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication \mathbf{F} of the terminals $i \in \mathcal{M} = \{1, \dots, m\}$, with Terminal i observing data X_i ,

$$H(X_1, \dots, X_m | \mathbf{F}) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B | X_{B^c}, \mathbf{F})$$

$$\leq H(X_1, \dots, X_m) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B | X_{B^c}).$$

 \boldsymbol{i} Does the RHS suggest a measure of mutual dependence

among the rvs X_1, \ldots, X_m ?

Maximum CR for $m \ge 2$ Terminals: Shared Information

Theorem 2: [I. Csiszár-P. Narayan]

Given $0 \le \epsilon < 1$, for an ϵ -CR L for \mathcal{M} achieved with interactive communication \mathbf{F} ,

$$H(L|\mathbf{F}) \leq H(X_1, \dots, X_m) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B|X_{B^c}) + m\nu$$

for every fractional partition λ of \mathcal{M} , with $\nu = \nu(\epsilon) = \epsilon \log |\mathcal{L}| + h(\epsilon)$.

Remarks:

- The proof of Theorem 2 relies on Theorem 1.
- When $\{(X_{1t}, \ldots, X_{mt})\}_{t=1}^{\infty}$ is an i.i.d. process, the upper bound is attained.

Shared Information

Theorem 2: [I. Csiszár-P. Narayan]

$$H(L|\mathbf{F}) \lesssim H(X_1, \dots, X_m) - \max_{\lambda} \sum_{B \in \mathcal{B}} \lambda_B H(X_B|X_{B^c})$$

$$\stackrel{\Delta}{=} SI(X_1,\ldots,X_m)$$

Theorems $1 \ {\rm and} \ 2$ extend to:

- random variables with densities [S. Nitinawarat-P. Narayan]
- ▶ a larger class of probability measures [H.Tyagi-P. Narayan].

Shared Information and Kullback-Leibler Divergence [I. Csiszár-P. Narayan, C. Chan-L. Zheng]

$$SI(X_1, ..., X_m) = H(X_1, ..., X_m) - \max_{\lambda} \sum_{B \in \mathcal{B}} \lambda_B H(X_B | X_{B^c})$$

(m = 2) = $H(X_1, X_2) - \left[H(X_1 | X_2) + H(X_2 | X_1)\right] = I(X_1 \land X_2)$
(m = 2) = $D(P_{X_1 X_2} || P_{X_1} \times P_{X_2})$

Shared Information and Kullback-Leibler Divergence [I. Csiszár-P. Narayan, C. Chan-L. Zheng]

$$SI(X_1, ..., X_m) = H(X_1, ..., X_m) - \max_{\lambda} \sum_{B \in \mathcal{B}} \lambda_B H(X_B | X_{B^c})$$

(m = 2) = $H(X_1, X_2) - \left[H(X_1 | X_2) + H(X_2 | X_1)\right] = I(X_1 \land X_2)$
(m = 2) = $D(P_{X_1 X_2} || P_{X_1} \times P_{X_2})$

$$(m \ge 2) = \min_{2 \le k \le m} \min_{A_k = (A_1, \dots, A_k)} \frac{1}{k-1} D\Big(P_{X_1 \dots X_m} \big|\big| \prod_{i=1}^k P_{X_{A_i}}\Big)$$

and equals 0 iff $P_{X_1...X_m} = P_{X_A}P_{X_{A^c}}$ for some $A \subsetneq \mathcal{M}$.

i Does *shared information* have an operational significance as a measure of the mutual dependence among the rvs X_1, \ldots, X_m ?

Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

Applications

Omniscience

[I. Csiszár-P. Narayan]

For $L = (X_1, \ldots, X_m)$, Theorem 2 gives

$$H(\mathbf{F}) \gtrsim H(X_1,\ldots,X_m) - SI(X_1,\ldots,X_m),$$

which, for m = 2, is

 $H(\mathbf{F}) \gtrsim H(X_1|X_2) + H(X_2|X_1).$ [Slepian – Wolf]

Signal Recovery: Data Compression

[S. Nitinawarat-P. Narayan]

With $L = X_1$, by Theorem 2

$$H(\mathbf{F}) \gtrsim H(X_1) - SI(X_1, \dots, X_m),$$

which, for m = 2, gives

 $H(\mathbf{F}) \gtrsim H(X_1|X_2).$

[Slepian-Wolf]

Secret Common Randomness

Terminals $1, \ldots, m$ generate CR L satisfying the *secrecy condition* $I(L \wedge \mathbf{F}) \cong 0.$

By Theorem 2,

$$H(L) \cong H(L|\mathbf{F}) \lesssim SI(X_1,\ldots,X_m).$$

- Secret key generation [I. Csiszár-P. Narayan]
- Secure function computation [H. Tyagi-P. Narayan]

Querying Common Randomness

[H. Tyagi-P. Narayan]

- ► A querier observes communication F and seeks to resolve the value of CR L by asking questions: "Is L = l?" with yes-no answers.
- ► The terminals in *M* seek to generate *L* using **F** so as to make the querier's burden as onerous as possible.

¿ What is the largest query exponent ?

Largest Query Exponent

$$E^* \triangleq rg \sup_{E} \quad \left[\inf_{q} P\left(q\left(L \mid \mathbf{F}\right) \ge 2^{nE}\right) \to 1 \text{ as } n \to \infty \right]$$

 $E^* = SI(X_1, \ldots, X_m)$

Shared information and a Hypothesis Testing Problem

$$SI(X_1,...,X_m) = \min_{2 \le k \le m} \min_{A_k = (A_1,...,A_k)} \frac{1}{k-1} D(P_{X_1...X_m} || \prod_{i=1}^k P_{X_{A_i}})$$

Related to exponent of "P_e-second kind" for an appropriate binary composite hypothesis testing problem, involving restricted CR L and communication F.

H. Tyagi and S. Watanabe, "Converses for secret key agreement and secure computing," *IEEE Trans. Information Theory*, September 2015.

In Closing ...

¿ How useful is the concept of *shared information* ?

A: Operational meaning in specific cases of distributed processing ...

In Closing ...

¿ How useful is the concept of shared information ?

A: Operational meaning in specific cases of distributed processing ...

For instance

- Consider n i.i.d. repetitions (say, in time) of the rvs X_1, \ldots, X_m .
- Data at time instant t is $X_{1t}, \ldots, X_{mt}, t = 1, \ldots, n.$
- ▶ Terminal *i* observes the i.i.d. data $(X_{i1}, \ldots, X_{in}), i \in \mathcal{M}.$
- ▶ Shared information-based results are asymptotically tight (in *n*):
 - Minimum rate of communication for omniscience
 - Maximum rate of a secret key
 - Largest query exponent
 - Necessary condition for secure function computation
 - Several problems in information theoretic cryptography.

Shared Information: Many Open Questions ...

- Significance in network source and channel coding ?
- Interactive communication over noisy channels ?
- Data-clustering applications ?
 [C. Chan-A. Al-Bashabsheh-Q. Zhou-T. Kaced-T.Liu, 2016]