SHARED INFORMATION

Prakash Narayan
with
Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe

Outline

Two-terminal model: Mutual information
Operational meaning in:

- Channel coding: channel capacity
- Lossy source coding: rate distortion function
- Binary hypothesis testing: Stein's lemma

Interactive communication and common randomness

- Two-terminal model: Mutual information
- Multiterminal model: Shared information

Applications

Outline

Two-terminal model: Mutual information

Operational meaning in:

- Channel coding: channel capacity
- Lossy source coding: rate distortion function
- Binary hypothesis testing: Stein's lemma

Interactive communication and common randomness

Applications

Mutual Information

Mutual information is a measure of mutual dependence between two rvs.

Mutual Information

Mutual information is a measure of mutual dependence between two rvs.
Let X_{1} and X_{2} be \mathbb{R}-valued rvs with joint probability distribution $P_{X_{1} X_{2}}$.
The mutual information between X_{1} and X_{2} is

$$
\begin{aligned}
I\left(X_{1} \wedge X_{2}\right) & = \begin{cases}\mathbb{E}_{P_{X_{1} X_{2}}}\left[\log \frac{d P_{X_{1} X_{2}}}{d P_{X_{1}} \times P_{X_{2}}}\left(X_{1}, X_{2}\right)\right], & \text { if } P_{X_{1} X_{2}} \prec P_{X_{1}} \times P_{X_{2}} \\
\infty, & \text { if } P_{X_{1} X_{2}} \nprec P_{X_{1}} \times P_{X_{2}}\end{cases} \\
& =D\left(P_{X_{1} X_{2}} \| P_{X_{1}} \times P_{X_{2}}\right) .(\text { Kullback }- \text { Leibler divergence })
\end{aligned}
$$

When X_{1} and X_{2} are finite-valued,

$$
\begin{aligned}
I\left(X_{1} \wedge X_{2}\right) & =H\left(X_{1}\right)+H\left(X_{2}\right)-H\left(X_{1}, X_{2}\right) \\
& =H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right)=H\left(X_{2}\right)-H\left(X_{2} \mid X_{1}\right) \\
& =H\left(X_{1}, X_{2}\right)-\left[H\left(X_{1} \mid X_{2}\right)+H\left(X_{2} \mid X_{1}\right)\right] .
\end{aligned}
$$

Channel Coding

Let \mathcal{X}_{1} and \mathcal{X}_{2} be finite alphabets, and $W: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be a stochastic matrix.

Discrete memoryless channel (DMC):

$$
W^{(n)}\left(x_{21}, \ldots, x_{2 n} \mid x_{11}, \ldots, x_{1 n}\right)=\prod_{i=1}^{n} W\left(x_{2 i} \mid x_{1 i}\right)
$$

Channel Capacity

Goal: Make code rate $\frac{1}{n} \log M$ as large as possible while keeping

$$
\max _{m} P\left(\phi\left(X_{21}, \ldots, X_{2 n}\right) \neq m \mid f(m)\right)
$$

to be small, in the asymptotic sense as $n \rightarrow \infty$.
[C.E. Shannon, 1948]

$$
\text { Channel capacity } C=\max _{P_{X_{1}}: P_{X_{2} \mid X_{1}}=W} I\left(X_{1} \wedge X_{2}\right) \text {. }
$$

Lossy Source Coding

Let $\left\{X_{1 t}\right\}_{t=1}^{\infty}$ be an \mathcal{X}_{1}-valued i.i.d. source.

Distortion measure:

$$
d\left(\left(x_{11}, \ldots, x_{1 n}\right),\left(x_{21}, \ldots, x_{2 n}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} d\left(x_{1 i}, x_{2 i}\right)
$$

Rate Distortion Function

Goal: Make (compression) code rate $\frac{1}{n} \log J$ as small as possible while keeping

$$
P\left(\frac{1}{n} \sum_{i=1}^{n} d\left(X_{1 i}, X_{2 i}\right) \leq \Delta\right)
$$

to be large, in the asymptotic sense as $n \rightarrow \infty$.
[Shannon, 1948, 1959]
Rate distortion function $R(\Delta)=\min _{P_{X_{2} \mid X_{1}}: \mathbb{E}\left[d\left(X_{1}, X_{2}\right)\right] \leq \Delta} I\left(X_{1} \wedge X_{2}\right)$.

Simple Binary Hypothesis Testing

Let $\left\{\left(X_{1 t}, X_{2 t}\right)\right\}_{t=1}^{\infty}$ be an $\mathcal{X}_{1} \times \mathcal{X}_{2}$-valued i.i.d. process generated according to

$$
H_{0}: P_{X_{1} X_{2}} \quad \text { or } \quad H_{1}: P_{X_{1}} \times P_{X_{2}}
$$

Test:
Decides H_{0} w.p. $T\left(0 \mid x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{2 n}\right)$,

$$
H_{1} \text { w.p. } T\left(1 \mid x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{2 n}\right)=1-T(0 \mid \ldots) .
$$

Stein's lemma [H. Chernoff, 1956]: For every $0<\epsilon<1$,

$$
\begin{aligned}
\lim _{n} & -\frac{1}{n} \log \inf _{T: P_{H_{0}}\left(T \text { says } H_{0}\right) \geq 1-\epsilon} P_{H_{1}}\left(T \text { says } H_{0}\right) \\
& =D\left(P_{X_{1} X_{2}} \| P_{X_{1}} \times P_{X_{2}}\right)=I\left(X_{1} \wedge X_{2}\right)
\end{aligned}
$$

Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

- Two-terminal model: Mutual information
- Multiterminal model: Shared information

Applications

Multiterminal Model

- Set of terminals $=\mathcal{M}=\{1, \ldots, m\}$.
- X_{1}, \ldots, X_{m} are finite-valued rvs with known joint distribution $P_{X_{1} \ldots X_{m}}$ on $\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}$.
- Terminal $i \in \mathcal{M}$ observes data X_{i}.
- Multiple rounds of interactive communication on a noiseless channel of unlimited capacity; all terminals hear all communication.

Interactive Communication

Interactive communication

- Assume: Communication occurs in consecutive time slots in r rounds.
- The corresponding rvs representing the communication are

$$
\begin{aligned}
\mathbf{F} & =\mathbf{F}\left(X_{1}, \ldots, X_{m}\right)=\left(F_{11}, \ldots, F_{1 m}, F_{21}, \ldots, F_{2 m}, \ldots, F_{r 1}, \ldots, F_{r m}\right) \\
& -F_{11}=f_{11}\left(X_{1}\right), F_{12}=f_{12}\left(X_{2}, F_{11}\right), \ldots \\
& -F_{j i}=f_{j i}\left(X_{i} ; \text { all previous communication }\right) .
\end{aligned}
$$

Simple communication: $\mathbf{F}=\left(F_{1}, \ldots, F_{m}\right), \quad F_{i}=f_{i}\left(X_{i}\right), 1 \leq i \leq m$.

[^0]
Applications

- Data exchange: Omniscience
- Signal recovery: Data compression
- Function computation
- Cryptography: Secret key generation

WatanExample: Function Computation

$$
\mathbf{X}_{1}=\binom{\mathbf{X}_{11}}{\mathbf{X}_{12}} \xrightarrow[\mathbf{F}_{2}]{\mathbf{F}_{1}}+\mathbf{X}_{2}=\binom{\mathbf{X}_{21}}{\mathbf{X}_{22}}
$$

[S. Watanabe]

- $X_{11}, X_{12}, X_{21}, X_{22}$ are mutually independent ($0.5,0.5$) bits.
- Terminals 1 and 2 wish to compute:

$$
G=g\left(X_{1}, X_{2}\right)=\mathbb{1}\left(\left(X_{11}, X_{12}\right)=\left(X_{21}, X_{22}\right)\right) .
$$

- Simple communication: $\mathbf{F}=\left(F_{1}=\left(X_{11}, X_{12}\right), F_{2}=\left(X_{21}, X_{22}\right)\right)$.
- Communication complexity: $H(\mathbf{F})=4$ bits.
- No privacy: Terminal 1 or 2 , or an observer of \mathbf{F}, learns all the data X_{1}, X_{2}.

WatanExample: Function Computation

$$
\mathbf{X}_{1}=\binom{\mathbf{X}_{11}}{\mathbf{X}_{12}} \xrightarrow[\mathbf{F}_{12}]{\mathbf{F}_{11}}+\mathbf{X}_{\mathbf{2}}=\binom{\mathbf{X}_{21}}{\mathbf{X}_{22}}
$$

- An interactive communication protocol:
$-\quad \mathbf{F}=\left(F_{11}=\left(X_{11}, X_{12}\right), F_{12}=G\right)$.
- Complexity: $H(\mathbf{F})=2.81$ bits.
- Some privacy: Terminal 2, or an observer of \mathbf{F}, learns X_{1}; Terminal 1, or an observer of \mathbf{F}, either learns X_{2} w.p. 0.25 or w.p. 0.75 that X_{2} differs from X_{1}.

WatanExample: Function Computation

$$
\mathbf{X}_{1}=\binom{\mathbf{X}_{11}}{\mathbf{X}_{12}} \xrightarrow[\mathbf{F}_{11}]{\mathbf{F}_{12}}+\mathbf{X}_{\mathbf{2}}=\binom{\mathbf{X}_{21}}{\mathbf{X}_{22}}
$$

- An interactive communication protocol:

$$
-\quad \mathbf{F}=\left(F_{11}=\left(X_{11}, X_{12}\right), F_{12}=G\right)
$$

- Complexity: $H(\mathbf{F})=2.81$ bits.
- Some privacy: Terminal 2, or an observer of \mathbf{F}, learns X_{1}; Terminal 1, or an observer of \mathbf{F}, either learns X_{2} w.p. 0.25 or w.p. 0.75 that X_{2} differs from X_{1}.
¿Can a communication complexity of 2.81 bits be bettered ?

Related Work

- Exact function computation
- Yao '79: Communication complexity.
- Gallager '88: Algorithm for parity computation in a network.
- Giridhar-Kumar '05: Algorithms for computing functions over sensor networks.
- Freris-Kowshik-Kumar '10: Survey: Connectivity, capacity, clocks, computation in large sensor networks.
- Orlitsky-El Gamal '84: Communication complexity with secrecy.
- Information theoretic function computation
- Körner-Marton '79: Minimum rate for computing parity.
- Orlitsky-Roche '01: Two terminal function computation.
- Nazer-Gastpar '07: Computation over noisy channels.
- Ma-Ishwar '08: Distributed source coding for interactive computing.
- Ma-Ishwar-Gupta '09: Multiround function computation in colocated networks.
- Tyagi-Gupta-Narayan '11: Secure function computation.
- Tyagi-Watanabe '13, '14 Secrecy generation, secure computing.
- Compressing interactive communication
- Schulman '92: Coding for interactive communication.
- Braverman-Rao '10: Information complexity of communication.
- Kol-Raz '13, Heupler '14: Interactive communication over noisy channels.

Mathematical Economics: Mechanism Design

- Thomas Marschak and Stefan Reichelstein, "Communication requirements for individual agents in networks and hierarchies,"
in The Economics of Informational Decentralization: Complexity, Efficiency and Stability: Essays in Honor of Stanley Reiter, John O. Ledyard, Ed., Springer, 1994.
- Kenneth R. Mount and Stanley Reiter, Computation and Complexity in Economic Behavior and Organization, Cambridge U. Press, 2002.

Courtesy: Demos Teneketzis

Common Randomness

For $0 \leq \epsilon<1$, given interactive communication \mathbf{F}, a rv $L=L\left(X_{1}, \ldots, X_{m}\right)$ is ϵ-CR for the terminals in \mathcal{M} using \mathbf{F}, if there exist local estimates

$$
L_{i}=L_{i}\left(X_{i}, \mathbf{F}\right), \quad i \in \mathcal{M}
$$

of L satisfying

$$
P\left(L_{i}=L, \quad i \in \mathcal{M}\right) \geq 1-\epsilon
$$

Common Randomness

Examples:

- Data exchange: Omniscience: $L=\left(X_{1}, \ldots, X_{m}\right)$.
- Signal recovery: Data compression: $L \supseteq X_{i^{*}}$, for some fixed $i^{*} \in \mathcal{M}$.
- Function computation: $L \supseteq g\left(X_{1}, \ldots, X_{m}\right)$ for a given g.
- Cryptography: Secret $C R$, i.e., secret key: L with $I(L \wedge \mathbf{F}) \cong 0$.

A Basic Operational Question

¿ What is the maximal CR, as measured by $H(L \mid \mathbf{F})$, that can be generated by a given interactive communication \mathbf{F} for a distributed processing task ?

A Basic Operational Question

¿ What is the maximal CR , as measured by $H(L \mid \mathbf{F})$, that can be generated by a given interactive communication \mathbf{F} for a distributed processing task ?

Answer in two steps:

- Fundamental structural property of interactive communication
- Upper bound on amount of CR achievable with interactive communication.

Shall start with the case of $m=2$ terminals.

Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]
For interactive communication \mathbf{F} of the Terminals 1 and 2 observing data X_{1} and X_{2}, respectively,

$$
I\left(X_{1} \wedge X_{2} \mid \mathbf{F}\right) \leq I\left(X_{1} \wedge X_{2}\right)
$$

In particular, independent rvs X_{1}, X_{2} remain so upon conditioning on an interactive communication.

Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]
For interactive communication \mathbf{F} of the Terminals 1 and 2 observing data X_{1} and X_{2}, respectively,

$$
I\left(X_{1} \wedge X_{2} \mid \mathbf{F}\right) \leq I\left(X_{1} \wedge X_{2}\right)
$$

In particular, independent rvs X_{1}, X_{2} remain so upon conditioning on an interactive communication.

Proof: For interactive communication $\mathbf{F}=\left(F_{11}, F_{12}, \ldots, F_{r 1}, F_{r 2}\right)$,

$$
\begin{aligned}
I\left(X_{1} \wedge X_{2}\right) & =I\left(X_{1}, F_{11} \wedge X_{2}\right) \\
& \geq I\left(X_{1} \wedge X_{2} \mid F_{11}\right) \\
& =I\left(X_{1} \wedge X_{2}, F_{12} \mid F_{11}\right) \\
& \geq I\left(X_{1} \wedge X_{2} \mid F_{11}, F_{12}\right),
\end{aligned}
$$

followed by iteration.

An Equivalent Form

For interactive communication \mathbf{F} of Terminals 1 and 2 :

$$
\begin{gathered}
I\left(X_{1} \wedge X_{2} \mid \mathbf{F}\right) \leq I\left(X_{1} \wedge X_{2}\right) \\
\hat{\mathbb{L}} \\
H(\mathbf{F}) \geq H\left(\mathbf{F} \mid X_{1}\right)+H\left(\mathbf{F} \mid X_{2}\right)
\end{gathered}
$$

Upper Bound on CR for Two Terminals

COMMUNICATION NETWORK

Using

- L is ϵ-CR for Terminals 1 and 2 with interactive communication \mathbf{F}; and
- $H(\mathbf{F}) \geq H\left(\mathbf{F} \mid X_{1}\right)+H\left(\mathbf{F} \mid X_{2}\right)$,
we get

$$
H(L \mid \mathbf{F}) \leq H\left(X_{1}, X_{2}\right)-\left[H\left(X_{1} \mid X_{2}\right)+H\left(X_{2} \mid X_{1}\right)\right]+2 \nu(\epsilon)
$$

where $\lim _{\epsilon \rightarrow 0} \nu(\epsilon)=0$.

Maximum CR for Two Terminals: Mutual Information

COMMUNICATION NETWORK

Lemma: [I. Csiszár - P. Narayan] Let L be any ϵ-CR for Terminals 1 and 2 observing data X_{1} and X_{2}, respectively, achievable with interactive \mathbf{F}. Then

$$
H(L \mid \mathbf{F}) \lesssim I\left(X_{1} \wedge X_{2}\right)=D\left(P_{X_{1} X_{2}} \| P_{X_{1}} \times P_{X_{2}}\right)
$$

Remark: When $\left\{\left(X_{1 t}, X_{2 t}\right)\right\}_{t=1}^{\infty}$ is an $\mathcal{X}_{1} \times \mathcal{X}_{2}$-valued i.i.d. process, the upper bound is attained.

Interactive Communication for $m \geq 2$ Terminals

Theorem 1: [I. Csiszár-P. Narayan]
For interactive communication \mathbf{F} of the terminals $i \in \mathcal{M}=\{1, \ldots, m\}$, with Terminal i oberving data X_{i},

$$
H(\mathbf{F}) \geq \sum_{B \in \mathcal{B}} \lambda_{B} H\left(\mathbf{F} \mid X_{B^{c}}\right)
$$

for every family $\mathcal{B}=\{B \subsetneq \mathcal{M}, B \neq \emptyset\}$ and set of weights ("fractional partition")

$$
\lambda \triangleq\left\{0 \leq \lambda_{B} \leq 1, B \in \mathcal{B}, \quad \text { satisfying } \sum_{B \in \mathcal{B}: B \ni i} \lambda_{B}=1 \forall i \in \mathcal{M}\right\}
$$

Equality holds if X_{1}, \ldots, X_{m} are mutually independent.

[^1]
CR for $m \geq 2$ Terminals: A Suggestive Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication \mathbf{F} of the terminals $i \in \mathcal{M}=\{1, \ldots, m\}$, with Terminal i observing data X_{i},

$$
\left(\mathbf{m}=\mathbf{2}: H(\mathbf{F}) \geq H\left(\mathbf{F} \mid X_{1}\right)+H\left(\mathbf{F} \mid X_{2}\right) \Leftrightarrow I\left(X_{1} \wedge X_{2} \mid \mathbf{F}\right) \leq I\left(X_{1} \wedge X_{2}\right)\right)
$$

$$
\begin{gathered}
H(\mathbf{F}) \geq \sum_{B \in \mathcal{B}} \lambda_{B} H\left(\mathbf{F} \mid X_{B^{c}}\right) \\
\hat{\Downarrow} \\
H\left(X_{1}, \ldots, X_{m} \mid \mathbf{F}\right)-\sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}, \mathbf{F}\right) \\
\leq H\left(X_{1}, \ldots, X_{m}\right)-\sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}\right) .
\end{gathered}
$$

An Analogy

[S. Nitinawarat-P. Narayan]
For interactive communication \mathbf{F} of the terminals $i \in \mathcal{M}=\{1, \ldots, m\}$, with Terminal i observing data X_{i},

$$
\begin{gathered}
H(\mathbf{F}) \geq \sum_{B \in \mathcal{B}} \lambda_{B} H\left(\mathbf{F} \mid X_{B^{c}}\right) \\
\hat{\Downarrow} \\
H\left(X_{1}, \ldots, X_{m} \mid \mathbf{F}\right)-\sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}, \mathbf{F}\right) \\
\leq H\left(X_{1}, \ldots, X_{m}\right)-\sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}\right) .
\end{gathered}
$$

¿ Does the RHS suggest a measure of mutual dependence among the rvs X_{1}, \ldots, X_{m} ?

Maximum CR for $m \geq 2$ Terminals: Shared Information

Theorem 2: [I. Csiszár-P. Narayan]
Given $0 \leq \epsilon<1$, for an ϵ-CR L for \mathcal{M} achieved with interactive communication \mathbf{F},

$$
H(L \mid \mathbf{F}) \leq H\left(X_{1}, \ldots, X_{m}\right)-\sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}\right)+m \nu
$$

for every fractional partition λ of \mathcal{M}, with $\nu=\nu(\epsilon)=\epsilon \log |\mathcal{L}|+h(\epsilon)$.

Remarks:

- The proof of Theorem 2 relies on Theorem 1.
- When $\left\{\left(X_{1 t}, \ldots, X_{m t}\right)\right\}_{t=1}^{\infty}$ is an i.i.d. process, the upper bound is attained.

Shared Information

Theorem 2: [I. Csiszár-P. Narayan]

$$
\begin{aligned}
H(L \mid \mathbf{F}) & \lesssim H\left(X_{1}, \ldots, X_{m}\right)-\max _{\lambda} \sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}\right) \\
& \triangleq S I\left(X_{1}, \ldots, X_{m}\right)
\end{aligned}
$$

Extensions

Theorems 1 and 2 extend to:

- random variables with densities [S. Nitinawarat-P. Narayan]
- a larger class of probability measures [H.Tyagi-P. Narayan].

Shared Information and Kullback-Leibler Divergence

[I. Csiszár-P. Narayan, C. Chan-L. Zheng]

$$
\begin{aligned}
& S I\left(X_{1}, \ldots, X_{m}\right)=H\left(X_{1}, \ldots, X_{m}\right)-\max _{\lambda} \sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}\right) \\
& \quad(m=2)=H\left(X_{1}, X_{2}\right)-\left[H\left(X_{1} \mid X_{2}\right)+H\left(X_{2} \mid X_{1}\right)\right]=I\left(X_{1} \wedge X_{2}\right) \\
& (m=2)=D\left(P_{X_{1} X_{2}}| | P_{X_{1}} \times P_{X_{2}}\right)
\end{aligned}
$$

Shared Information and Kullback-Leibler Divergence

[I. Csiszár-P. Narayan, C. Chan-L. Zheng]

$$
\begin{aligned}
& S I\left(X_{1}, \ldots, X_{m}\right)=H\left(X_{1}, \ldots, X_{m}\right)-\max _{\lambda} \sum_{B \in \mathcal{B}} \lambda_{B} H\left(X_{B} \mid X_{B^{c}}\right) \\
& \quad(m=2)=H\left(X_{1}, X_{2}\right)-\left[H\left(X_{1} \mid X_{2}\right)+H\left(X_{2} \mid X_{1}\right)\right]=I\left(X_{1} \wedge X_{2}\right) \\
& (m=2)=D\left(P_{X_{1} X_{2}}| | P_{X_{1}} \times P_{X_{2}}\right)
\end{aligned}
$$

$$
(m \geq 2)=\min _{2 \leq k \leq m} \min _{\mathcal{A}_{k}=\left(A_{1}, \ldots, A_{k}\right)} \frac{1}{k-1} D\left(P_{X_{1} \ldots X_{m}} \| \prod_{i=1}^{k} P_{X_{A_{i}}}\right)
$$

and equals 0 iff $P_{X_{1} \ldots X_{m}}=P_{X_{A}} P_{X_{A^{c}}}$ for some $A \subsetneq \mathcal{M}$.
¿ Does shared information have an operational significance as a measure of the mutual dependence among the rvs X_{1}, \ldots, X_{m} ?

Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

Applications

Omniscience

[I. Csiszár-P. Narayan]
For $L=\left(X_{1}, \ldots, X_{m}\right)$, Theorem 2 gives

$$
H(\mathbf{F}) \gtrsim H\left(X_{1}, \ldots, X_{m}\right)-S I\left(X_{1}, \ldots, X_{m}\right)
$$

which, for $m=2$, is

$$
H(\mathbf{F}) \gtrsim H\left(X_{1} \mid X_{2}\right)+H\left(X_{2} \mid X_{1}\right) . \quad[\text { Slepian }- \text { Wolf }]
$$

Signal Recovery: Data Compression

[S. Nitinawarat-P. Narayan]
With $L=X_{1}$, by Theorem 2

$$
H(\mathbf{F}) \gtrsim H\left(X_{1}\right)-S I\left(X_{1}, \ldots, X_{m}\right),
$$

which, for $m=2$, gives

$$
H(\mathbf{F}) \gtrsim H\left(X_{1} \mid X_{2}\right) .
$$

[Slepian-Wolf]

Secret Common Randomness

Terminals $1, \ldots, m$ generate CR L satisfying the secrecy condition

$$
I(L \wedge \mathbf{F}) \cong 0
$$

By Theorem 2,

$$
H(L) \cong H(L \mid \mathbf{F}) \lesssim S I\left(X_{1}, \ldots, X_{m}\right)
$$

- Secret key generation [I. Csiszár-P. Narayan]
- Secure function computation [H. Tyagi-P. Narayan]

Querying Common Randomness

[H. Tyagi-P. Narayan]

- A querier observes communication \mathbf{F} and seeks to resolve the value of $\mathrm{CR} L$ by asking questions: "Is $L=l$?" with yes-no answers.
- The terminals in \mathcal{M} seek to generate L using \mathbf{F} so as to make the querier's burden as onerous as possible.
¿ What is the largest query exponent?

Largest Query Exponent

$$
\begin{gathered}
E^{*} \triangleq \arg \sup _{E}\left[\inf _{q} P\left(q(L \mid \mathbf{F}) \geq 2^{n E}\right) \rightarrow 1 \text { as } n \rightarrow \infty\right] \\
E^{*}=S I\left(X_{1}, \ldots, X_{m}\right)
\end{gathered}
$$

Shared information and a Hypothesis Testing Problem

$$
S I\left(X_{1}, \ldots, X_{m}\right)=\min _{2 \leq k \leq m} \min _{\mathcal{A}_{k}=\left(A_{1}, \ldots, A_{k}\right)} \frac{1}{k-1} D\left(P_{X_{1} \ldots X_{m}} \| \prod_{i=1}^{k} P_{X_{A_{i}}}\right)
$$

- Related to exponent of " P_{e}-second kind" for an appropriate binary composite hypothesis testing problem, involving restricted CR L and communication \mathbf{F}.

[^2]
In Closing ...

¿ How useful is the concept of shared information ?

A: Operational meaning in specific cases of distributed processing ...

In Closing ...

¿ How useful is the concept of shared information?

A: Operational meaning in specific cases of distributed processing ...
For instance

- Consider n i.i.d. repetitions (say, in time) of the rvs X_{1}, \ldots, X_{m}.
- Data at time instant t is $X_{1 t}, \ldots, X_{m t}, \quad t=1, \ldots, n$.
- Terminal i observes the i.i.d. data $\left(X_{i 1}, \ldots, X_{i n}\right), \quad i \in \mathcal{M}$.
- Shared information-based results are asymptotically tight (in n):
- Minimum rate of communication for omniscience
- Maximum rate of a secret key
- Largest query exponent
- Necessary condition for secure function computation
- Several problems in information theoretic cryptography.

Shared Information: Many Open Questions ...

- Significance in network source and channel coding ?
- Interactive communication over noisy channels ?
- Data-clustering applications ?
[C. Chan-A. Al-Bashabsheh-Q. Zhou-T. Kaced-T.Liu, 2016]

[^0]: A. Yao, "Some complexity questions related to distributive computing," Proc. Annual Symposium on Theory of Computing, 1979.

[^1]: Special case of:
 M. Madiman and P. Tetali, "Information inequalities for joint distributions, with interpretations and applications," IEEE Trans. Inform. Theory, June 2010.

[^2]: H. Tyagi and S. Watanabe, "Converses for secret key agreement and secure computing," IEEE Trans.

 Information Theory, September 2015.

