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Our goal is to develop theory and algorithms  
for compressive off-the-grid imaging 

Off-the-grid = Continuous domain representation 

Compressive off-the-grid imaging:  

Exploit continuous domain modeling to improve  

image recovery from few measurements 

 

 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Few 
measurements 



Motivation: MRI Reconstruction 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Main Problem:  

Reconstruct image from Fourier domain samples 

Related: Computed Tomography, Florescence Microscopy 



Uniform Fourier Samples =  
Fourier Series Coefficients 



Fourier  
Interpolation 

Fourier  
Extrapolation 

vs. 

Types of “Compressive” Fourier Domain Sampling 

radial random low-pass 

Super-resolution 
recovery 

“Compressed Sensing” 
recovery 



CURRENT 
DISCRETE 
PARADIGM 



“True” measurement model: 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Continuous Continuous 



“True” measurement model: 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Approximated measurement model: 

DISCRETE DISCRETE 

Continuous Continuous 



Continuous 

DFT Reconstruction 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Continuous 



Continuous 

DFT Reconstruction 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Continuous 

DISCRETE 



Continuous 

DFT Reconstruction 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Continuous 

DISCRETE DISCRETE 



“Compressed Sensing” Recovery 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Full sampling is costly! 
(or impossible—e.g. Dynamic MRI) 



“Compressed Sensing” Recovery 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Randomly 
Undersample 



“Compressed Sensing” Recovery 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Convex 
Optimization 

Sparse 
Model 

Randomly 
Undersample 



Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Convex 
Optimization 

Sparse 
Model 

Example: 
Assume discrete gradient  
of image is sparse 
 
 
Piecewise constant model 



Recovery by Total Variation (TV) minimization 

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 



Recovery by Total Variation (TV) minimization 

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 



Recovery by Total Variation (TV) minimization 

Sample locations 

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 

Restricted DFT 



Recovery by Total Variation (TV) minimization 

Convex optimization problem 
Fast iterative algorithms:  
ADMM/Split-Bregman,  
FISTA, Primal-Dual, etc. 

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 

Restricted DFT 

Sample locations 



Example: 

25% Random  
Fourier samples 

(variable density) 

Rel. Error = 30% 



Example: 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Rel. Error = 5% 25% Random  
Fourier samples 

(variable density) 



Theorem [Krahmer & Ward, 2012]: 

If                      has s-sparse gradient, then f is the 

unique solution to (TV-min) with high probability 

provided the number of random* Fourier samples m 

satisfies 

 

 

* Variable density sampling 



Summary of  
DISCRETE PARADIGM 

• Approximate  
 

• Fully sampled:  
Fast reconstruction by  
 

• Under-sampled (Compressed sensing): 
Exploit sparse models & convex optimization 
– E.g. TV-minimization 
– Recovery guarantees  



Summary of  
DISCRETE PARADIGM 

• Approximate  
 

• Fully sampled:  
Fast reconstruction by  
 

• Under-sampled (Compressed sensing): 
Exploit sparse models & convex optimization 
– E.g. TV-minimization 
– Recovery guarantees  



Problem: The DFT Destroys Sparsity! 
Continuous 



Problem: The DFT Destroys Sparsity! 
Continuous 

Exact Derivative 



Problem: The DFT Destroys Sparsity! 
Continuous DISCRETE 

Sample 

Exact Derivative 



Problem: The DFT Destroys Sparsity! 
Continuous DISCRETE 

Sample 

Exact Derivative 

Gibb’s Ringing! 



Problem: The DFT Destroys Sparsity! 
Continuous DISCRETE 

Sample 

FINITE DIFFERENCE 
Exact Derivative 

Not Sparse! 



Consequence: TV fails in super-resolution setting 

x8 Ringing Artifacts 
Fourier 



 

Challenges: 

• Continuous domain sparsity       Discrete domain sparsity 

 

 

 

• What are the continuous domain analogs of sparsity? 

• Can we pose recovery as a convex optimization problem? 

• Can we give recovery guarantees, a la TV-minimization? 

 

Can we move beyond the  
DISCRETE PARADIGM 
in Compressive Imaging? 



New  
Off-the-Grid 

Imaging 
Framework: 

Theory 



Classical Off-the-Grid Method: Prony (1795) 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Uniform   
time samples 

• Recent extension to 2-D images:  

Pan et al. (2014), “Sampling Curves with FRI” 

Off-the-grid 
frequencies 

• Robust variants:  

Pisarenko (1973), MUSIC (1986), ESPRIT (1989),  

Matrix pencil (1990) . . . Atomic norm (2011) 

 



Main inspiration: Finite-Rate-of-Innovation (FRI) 
                                                    [Vetterli et al., 2002] 

Motivation:   

Finite rate of innovation (FRI) 

Pan et al. (2014), “Sampling 

Curves with FRI” 

Tang et al. (2013), “CS Off 

the Grid”; Candes (2014). 

Uniform   
Fourier samples 

• Recent extension to 2-D images:  

Pan et al. (2014), “Sampling Curves with FRI” 

Off-the-grid 
PWC signal 

• Recent extension to 2-D images:  

Pan, Blu, & Dragotti (2014), “Sampling Curves with FRI”. 

 



Annihilation Relation: for all frequencies 

spatial domain multiplication 

annihilating function 

annihilating filter 

convolution 

uniform samples 

Fourier domain 



for all frequencies 

annihilating function 

annihilating filter 

uniform samples 

Stage 1: solve linear system for filter 

recover signal 
Stage 2: solve linear system for amplitudes 



Isolated Diracs 

Challenges extending FRI to higher dimensions:  
Singularities not isolated 

2-D PWC function 



Isolated Diracs 

Challenges extending FRI to higher dimensions:  
Singularities not isolated 

2-D PWC function 

Diracs on a Curve 



spatial domain 

Fourier domain 

multiplication 

annihilating function 

annihilating filter 

convolution 

Recall 1-D Case… 



2-D PWC functions satisfy an annihilation relation 

spatial domain 

Annihilation relation: 
for all frequencies 

Fourier domain 

multiplication 

annihilating filter 

convolution 



image 

Can recover edge set when it is the 
zero-set of a 2-D trigonometric polynomial 
[Pan et al., 2014] 

“FRI Curve” 



25x25 coefficients 13x13 coefficients 

Multiple curves 
& intersections 

Non-smooth 
points 

Approximate 
arbitrary curves 

7x9 coefficients 

FRI curves can represent complicated edge 
geometries with few coefficients 



• Not suitable for natural images 

• 2-D only 

• Recovery is ill-posed: 

Infinite DoF 

We give an improved theoretical framework  
for higher dimensional FRI recovery 

• [Pan et al., 2014] derived annihilation relation for 
piecewise complex analytic signal model 



• Extends easily to n-D 

• Provable sampling guarantees 

• Fewer samples necessary  

for recovery 

We give an improved theoretical framework  
for higher dimensional FRI recovery  
[O. & Jacob, SampTA 2015] 
• Proposed model:  

piecewise smooth signals   



Prop: If f is PWC with edge set                   

for      bandlimited to     then 

 

 

 

 

Annhilation relation for PWC signals 

any 1st order partial derivative 



Proof idea:   
Show                        as tempered distributions  
Use convolution theorem 

Prop: If f is PWC with edge set                   

for      bandlimited to     then 

 

 

 

 

Annhilation relation for PWC signals 

any 1st order partial derivative 



Distributional derivative of indicator function: 

divergence  
theorem 

smooth test function 

Weighted curve integral 



Prop: If f is PW linear, with edge set                   

and       bandlimited to     then 

 

 

 

 

 

Annhilation relation for PW linear signals 

any 2nd order partial derivative 



Prop: If f is PW linear, with edge set                   

and       bandlimited to     then 

 

 

 

 

 

Annhilation relation for PW linear signals 

any 2nd order partial derivative 

product rule x2 

annihilated by  

Proof idea: 



Can extend annihilation relation to a wide class of 
piecewise smooth images. 

Any constant coeff. 
differential operator 



Signal Model: 

PW Constant 

PW Analytic* 

PW Harmonic 

PW Linear 

PW Polynomial 

 

Choice of Diff. Op.: 

 
1st order 

2nd order 

nth order 

Can extend annihilation relation to a wide class of 
piecewise smooth images. 



Signal Model: 

PW Constant 

PW Analytic* 

PW Harmonic 

PW Linear 

PW Polynomial 

 

Choice of Diff. Op.: 

 
1st order 

2nd order 

nth order 

Can extend annihilation relation to a wide class of 
piecewise smooth images. 



Signal Model: 

PW Constant 

PW Analytic* 

PW Harmonic 

PW Linear 

PW Polynomial 

 

Choice of Diff. Op.: 

 
1st order 

2nd order 

nth order 

Can extend annihilation relation to a wide class of 
piecewise smooth images. 



Sampling theorems: 
Necessary and sufficient number of Fourier samples for 

1. Unique recovery of edge set/annihilating polynomial 

2. Unique recovery of full signal given edge set 

– Not possible for PW analytic, PW harmonic, etc. 

– Prefer PW polynomial models 

 

 Focus on 2-D PW constant signals 



Proof (a la Prony’s Method):  

Form Toeplitz matrix T from samples, use uniqueness of 

Vandermonde  decomposition:   

 

  

 

Challenges to proving uniqueness 

“Caratheodory Parametrization” 

1-D FRI Sampling Theorem [Vetterli et al., 2002]: 

A continuous-time PWC signal with K jumps can be 

uniquely recovered from 2K+1 uniform Fourier samples. 



Extends to n-D if singularities isolated [Sidiropoulos, 2001] 

 

 

Not true in our case--singularities supported on curves: 

 

 

Requires new techniques: 

– Spatial domain interpretation of annihilation relation 

– Algebraic geometry of trigonometric polynomials 

   

   

 

  

 

 
 
 
 
 
 

Challenges proving uniqueness, cont. 



Prop:  Every zero-set of a trig. polynomial C with no 

isolated points has a unique real-valued trig. polynomial       

of minimal degree such that if  

then                                             and  

                                       

Minimal (Trigonometric) Polynomials 
Define                                       to be the dimensions of the 

smallest rectangle containing the Fourier support of   

 

Degree of min. poly. = analog of sparsity/complexity of edge set 



Zero-sets of trig polynomials of degree (K,L)  

are in 1-to-1 correspondence with  

Real algebraic plane curves of degree (K,L) 

   

 

  

 

 
 
 
 
 
 

Proof idea: Pass to Real Algebraic Plane Curves 

Conformal  
change of  
variables 



Theorem: If f is PWC* with edge set                   

with      minimal and bandlimited to      then                

              is the unique solution to 

 

 

 

 

 

Uniqueness of edge set recovery 

*Some geometric restrictions apply 

            Requires samples  
             of      in 
             to build equations 
 



• Gap between necessary and sufficient # of samples: 

 

 

 

 

• Restrictions on geometry of edge sets: non-intersecting 

   

Current Limitations to Uniqueness Theorem 

Necessary Sufficient 



Theorem: If f is PWC* with edge set                   

with      minimal and bandlimited to      then                

             is the unique solution to  

 

when the sampling set   

 

 

Uniqueness of signal (given edge set) 

*Some geometric restrictions apply 



Theorem: If f is PWC* with edge set                   

with      minimal and bandlimited to      then                

             is the unique solution to  

 

when the sampling set   

 

 

Uniqueness of signal (given edge set) 

*Some geometric restrictions apply 

Equivalently, 



Summary of Proposed 
Off-the-Grid Framework 

• Extend Prony/FRI methods to recover 
multidimensional singularities (curves, surfaces) 
 

• Unique recovery from uniform Fourier samples: 
# of samples proportional to degree of edge set 
polynomial 
 
 

• Two-stage recovery 
1. Recover edge set by solving linear system 

 
2. Recover amplitudes 



Summary of Proposed 
Off-the-Grid Framework 

• Extend Prony/FRI methods to recover 
multidimensional singularities (curves, surfaces) 
 

• Unique recovery from uniform Fourier samples: 
# of samples proportional to degree of edge set 
polynomial 
 
 

• Two-stage recovery 
1. Recover edge set by solving linear system  

(Robust?) 
2. Recover amplitudes (How?) 



New  
Off-the-Grid 

Imaging 
Framework: 
Algorithms 



LR INPUT 

Two-stage Super-resolution MRI Using Off-the-Grid 
Piecewise Constant Signal Model [O. & Jacob, ISBI 2015] 

Off-the-grid 

1. Recover edge set 2. Recover amplitudes 

 

 
Computational 

Challenge! 

Off-the-grid 

Spatial 
  Domain   
Recovery 

Discretize  

HR OUTPUT 

2. Recover amplitudes 

On-the-grid 



Matrix representation of annihilation 

2-D convolution matrix 
(block Toeplitz) 

2(#shifts) x (filter size) 

gridded center 
Fourier samples 

vector of filter coefficients 



Basis of algorithms:  
Annihilation matrix is low-rank 

Prop: If the level-set function is bandlimited to 

and the assumed filter support                     then                                

   

 

Spatial domain 

Fourier domain 



Basis of algorithms:  
Annihilation matrix is low-rank 

Prop: If the level-set function is bandlimited to 

and the assumed filter support                     then                                

   

 
Fourier domain  

 

Assumed filter: 33x25 
Samples: 65x49  Rank     300 

Example:  
Shepp-Logan 



1. Compute SVD 

Stage 1: Robust annihilting filter estimation 

Average over entire null-space 

Eliminates spurious zeros / improves 

robustness 

Generalizes Spectral MUSIC  

3. Compute sum-of-squares average 

Recover common zeros 

2. Identify null space 



Stage 2: Weighted TV Recovery 

discretize relax 

x = discrete spatial domain image 

D = discrete gradient 

A = Fourier undersampling operator 

b = k-space samples 

 

 

Edge weights 



Super-resolution of MRI Medical Phantoms 

Analytical phantoms from [Guerquin-Kern, 2012] 

x8 

x4 



x2 

Super-resolution of Real MRI Data  



Super-resolution of Real MRI Data (Zoom)  



LR INPUT 

Two Stage Algorithm 

Off-the-grid 

1. Recover edge set 2. Recover amplitudes 

 

 
Computational 

Challenge! 

Off-the-grid 

Spatial 
  Domain   
Recovery 

Discretize  

HR OUTPUT 

2. Recover amplitudes 

On-the-grid 

Need uniformly sampled region!  



   INPUT 

One Stage Algorithm [O. & Jacob, SampTA 2015] 

Jointly estimate edge set and amplitudes 

Off-the-grid 

 

 

 
    OUTPUT 

Interpolate 

Fourier data 

Accommodate random samples 



Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 

Recall: 

Toeplitz-like matrix built from Fourier data 



Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 



Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 

Lift 

Toeplitz 1-D Example: 

Missing data 



Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 

Toeplitz 1-D Example: 

Complete matrix 



Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 

Project 

Toeplitz 1-D Example: 



 

 

 

 

Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 

NP-Hard! 



 

 

 

 

• Entirely off the grid 

• Extends to CS paradigm 

• Use regularization penalty for other inverse problems 

off-the-grid alternative to TV, HDTV, etc 

 

 

 

 

Pose recovery as a one-stage 
structured low-rank matrix completion problem 

or 

Convex Relaxation 

Nuclear norm – sum of singular values 



• Standard algorithms are slow: 

Apply ADMM = Singular value thresholding (SVT) 

Each iteration requires a large SVD: 

                               

 

• Real data can be “high-rank”: 

       

 

 

 

 

Computational challenges 

(#pixels) x (filter size) 
e.g. 106 x 2000           

e.g. 
Singular values of 
Real MR image 



• IRLS: Iterative Reweighted Least Squares 

• Proposed for low-rank matrix completion in 

[Fornasier, Rauhut, & Ward, 2011], [Mohan & Fazel, 2012] 

• Adapt to structured matrix case: 

 

 

• Without modification, this approach is slow! 

       

 

 

 

Proposed Approach: Adapt IRLS algorithm 



• GIRAF = Generic Iterative Reweighted Annihilating Filter 

• Exploit convolution structure to simplify IRLS algorithm: 

 

 

• Condenses weight matrix to single annihilating filter 

• Solves problem in original domain 

 

       

 

 

GIRAF algorithm [O. & Jacob, ISBI 2016] 





Table: iterations/CPU time to 
reach convergence tolerance of 
NMSE < 10-4. 
 

Convergence speed  
of GIRAF 



  Fully sampled           TV (SNR=17.8dB)        GIRAF (SNR=19.0) 
 

50% Fourier samples 
Random uniform                                                 error                                     error 



 

 

 

 

Summary 

• New framework for off-the-grid image recovery 

– Extends FRI annihilating filter framework to 

piecewise polynomial images 

– Sampling guarantees 

• Two stage recovery scheme for SR-MRI 

– Robust edge mask estimation 

– Fast weighted TV algorithm 

• One stage recovery scheme for CS-MRI 

– Structured low-rank matrix completion 

– Fast GIRAF algorithm 

 

 

 

WTV 



 

 

 

 

Future Directions 

• Focus: One stage recovery scheme for CS-MRI 

– Structured low-rank matrix completion 

 

• Recovery guarantees for random sampling? 

• What is the optimal random sampling scheme? 

 

 

 

 



 
Thank You! 

References 
• Krahmer, F. & Ward, R. (2014). Stable and robust sampling strategies for compressive imaging. Image 

Processing, IEEE Transactions on, 23(2), 612- 
• Pan, H., Blu, T., & Dragotti, P. L. (2014). Sampling curves with finite rate of innovation. Signal Processing, 

IEEE Transactions on, 62(2), 458-471. 
• Guerquin-Kern, M., Lejeune, L., Pruessmann, K. P., & Unser, M. (2012). Realistic analytical phantoms for 

parallel Magnetic Resonance Imaging.Medical Imaging, IEEE Transactions on, 31(3), 626-636 
• Vetterli, M., Marziliano, P., & Blu, T. (2002). Sampling signals with finite rate of innovation. Signal 

Processing, IEEE Transactions on, 50(6), 1417-1428. 
• Sidiropoulos, N. D. (2001). Generalizing Caratheodory's uniqueness of harmonic parameterization to N 

dimensions. Information Theory, IEEE Transactions on,47(4), 1687-1690. 
• Ongie, G., & Jacob, M. (2015). Super-resolution MRI Using Finite Rate of Innovation Curves. Proceedings 

of ISBI 2015, New York, NY. 
• Ongie, G. & Jacob, M. (2015). Recovery of Piecewise Smooth Images from Few Fourier Samples. 

Proceedings of SampTA 2015, Washington D.C. 
• Ongie, G. & Jacob, M. (2015). Off-the-grid Recovery of Piecewise Constant Images from Few Fourier 

Samples. Arxiv.org preprint. 
• Fornasier, M., Rauhut, H., & Ward, R. (2011). Low-rank matrix recovery via iteratively reweighted least 

squares minimization. SIAM Journal on Optimization, 21(4), 1614-1640. 
• Mohan, K, and Maryam F. (2012). Iterative reweighted algorithms for matrix rank minimization." The 

Journal of Machine Learning Research 13.1 3441-3473. 
 
 

Acknowledgements 
• Supported by grants: NSF CCF-0844812,  NSF CCF-1116067,  

NIH 1R21HL109710-01A1, ACS RSG-11-267-01-CCE,  
and ONR-N000141310202. 

 
 
 


