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Our goal 1s to develop theory and algorithms
for compressive off-the-grid imaging

Off-the-grid = Continuous domain representation

Compressive off-the-grid imaging:
Exploit continuous domain modeling to improve

image recovery from few measurements



Motivation: MRI Reconstruction

Main Problem:

Reconstruct image from Fourier domain samples

Related: Computed Tomography, Florescence Microscopy
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Uniform Fourier Samples
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Fourier Series Coefficients



Types of “Compressive” Fourier Domain Sampling

low-pass radial random

VS.
Fourier Fourier
Extrapolation Interpolation
Super-resolution “Compressed Sensing”

recovery recovery
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“True” measurement model:



“True” measurement model:
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Approximated measurement model:

DFT
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DFT Reconstruction
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DFT Reconstruction

Continuous
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“Compressed Sensing” Recovery

Full sampling Is costly!
(or impossible—e.g. Dynamic MRI)



“Compressed Sensing” Recovery

Randomly
Undersample



“Compressed Sensing” Recovery
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Randomly
Undersample

Convex
Optimization
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Assume discrete gradient
of Image Is sparse
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Recovery by Total Variation (TV) minimization

TV semi-norm: [|gl|Tv = Z \/'gi—l—l,j — i il + |gij+1 — &l
I,

I.e., L1-norm of discrete
gradient magnitude




Recovery by Total Variation (TV) minimization

TV semi-norm: [|gl|Tv = Z \/'gi—l—l,j — i il + |gij+1 — &l
I,

I.e., L1-norm of discrete
gradient magnitude

min ||g||tv subject to Fog = Fof (TV-min)
gechN



Recovery by Total Variation (TV) minimization

TV semi-norm: [|gl|Tv = Z \/'gi—l—l,j — i il + |gij+1 — &l
I,

I.e., L1-norm of discrete
gradient magnitude

min ||g||tv subject to Fog = Fof (TV-min)
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Restricted DFT

Sample locations



Recovery by Total Variation (TV) minimization

TV semi-norm: [|gl|Tv = Z \/'gi—l—l,j — i il + |gij+1 — &l
I,

I.e., L1-norm of discrete
gradient magnitude

min ||g||tv subject to Fog = Fof (TV-min)

gechN
Convex optimization problem Restricted DFT “o: see o a0
Fast iterative algorithms:
ADMMY/Split-Bregman, Q = S O00 T BBORC
FISTA, Primal-Dual, etc. REIETIETIENS

Sample locations



Example

Rel. Error = 30%

25% Random
Fourier samples
(variable density)



Example

Rel. Error = 5%

25% Random
Fourier samples
(variable density)



Theorem [Krahmer & Ward, 2012]:
If f € CNXN has s-sparse gradient, then f is the
unique solution to (TV-min) with high probability

provided the number of random* Fourier samples m

satisfies m > slog>(s) log”(N)

*Variable density sampling




Summary of

DISCREETE FARADIGHM
 Approximate F — DFT

 Fully sampled: .
Fast reconstructionby DFT ™

« Under-sampled (Compressed sensing):
Exploit sparse models & convex optimization

— E.g. TV-minimization
— Recovery guarantees



Summary of
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 Approximate F — DFT

 Fully sampled: .
Fast reconstructionby DFT ™

« Under-sampled (Compressed sensing):
Exploit sparse models & convex optimization

— E.g. TV-minimization
— Recovery guarantees



Problem: The DFT Destroys Sparsity!

Continuous
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Problem: The DFT Destroys Sparsity!

Continuous DISCRETE

F

s

|||||||||||||

7 Gibb’s Ringing!

|||||||||||||

Exact Derivative



Problem: The DFT Destroys Sparsity!

Continuous

F
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Exact Derivative
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Consequence: TV fails in super-resolution setting

Fourier

X8
|

(a) Fully sampled (b) IFFT, SNR=10.8dB (¢c) TV, SNR=16.6dB



Can we move beyond the
DISCHEETE FARADIGHM

In Compressive Imaging?
Challenges:

- Continuous domain sparsity = Discrete domain sparsity

« What are the continuous domain analogs of sparsity?
« Can we pose recovery as a convex optimization problem?

« Can we give recovery guarantees, a la TV-minimization?



New
Off-the-Grid
Imaging
Framework:
Theory



Classical Off-the-Grid Method: Prony (1795)

f(t;) f(w)
| ‘ ML T I y
W] ‘ E— l !
Uniform Off-the-grid
time samples frequencies

* Robust variants:
Pisarenko (1973), MUSIC (1986), ESPRIT (1989),
Matrix pencil (1990) . .. Atomic norm (2011)



Main inspiration: Finite-Rate-of-Innovation (FRI)

[Vetterli et al., 2002]
K] f(x)
| 4 ‘ | ‘ | ‘ [l —_—
Uniform Off-the-grid
Fourier samples PWC signal

« Recent extension to 2-D images:
Pan, Blu, & Dragotti (2014), “Sampling Curves with FRI”,



spatial domain muItipIic{ation |

s,

QIS S
f(x) U l | o
- annihilating function
Fourier domain convolution
f[k] Yk Ck

|I‘I‘I|I| (12_7‘-)'() | ‘.I |

annihilating filter

Annihilation Relation: Zk Y¢e—kCk = 0



e ' Stage 2: solve linear system for amplitudes
recover signal
o
QIS S — 0
f(x) U l L o
— annihilating function v>
f[k] ® o ®
(j27k)
II‘I""' —_ |I‘|.|I|‘* I I =0

annihilating filter

A

Stage 1: solve linear system for filter



Challenges extending FRI to higher dimensions:
Singularities not isolated

2-D PWC function
f(x,y)

Isolated Diracs



Challenges extending FRI to higher dimensions:
Singularities not isolated

2-D PWC function Oxf
f(x,y)

Vv
—

Diracs on a Curve

X 8,f .




Recall 1-D Case...

L),

~ AN
SV WY

.............

annihilating filter

N

annihilating function



2-D PWC functions satisfy an annihilation relation

spatial domain

f(x,y)

Fourier domain

2k
—

T

|

annihilating filter

Annihilation relation: Zk Vil —kice =0



Can recover edge set when it is the
zero-set of a 2-D trigonometric polynomial
[Pan et al., 2014]

D
{u=0}O

p(x,y) = Y cg et upp oy ye”
(k,1)EN



FRI curves can represent complicated edge
geometries with few coefficients

Multiple curves Non-smooth Approximate
& Intersections points arbitrary curves

13x13 coefficients 7x9 coefficients 25x25 coefficients



We give an improved theoretical framework
for higher dimensional FRI recovery

» [Pan et al., 2014] derived annihilation relation for
piecewise complex analytic signal model

f(z) = Zgi(Z) - 10,(2)

s.t. g; analytic in £,
* Not suitable for natural images

« 2-Donly

« Recovery is ill-posed:

Infinite DoF




We give an improved theoretical framework
for higher dimensional FRI recovery
[O0. & Jacob, SampTA 2015]

* Proposed model:
plecewise smooth signals

) =" &i(x) - 1a,()

s.t. g; smooth in ;

» Extends easily to n-D

* Provable sampling guarantees

- Fewer samples necessary

for recovery




Annhilation relation for PWC signals

Prop: If fis PWC with edge set E C {u = 0}
for 1 bandlimited to A then

Y hlk|of[e —k] =0, VL€ Z"

kEA \

any 15t order partial derivative

1 (x)




Annhilation relation for PWC signals

Prop: If fis PWC with edge set E C {u = 0}
for 1 bandlimited to A then

> Rk]Of[e — k] =0, Ve€ Z"

kEA \

any 15t order partial derivative

Proof idea:
Show u - 0f = 0 astempered distributions
Use convolution theorem



Distributional derivative of indicator function:
smooth test function

(Ojla, ) = —(1q, O;p)

—/ 8j(,0 dx

Q

—% @ N;j do
919

divergence
theorem

(

\

Weighted curve integral

oS



Annhilation relation for PW linear signals

Prop: If fis PW linear, with edge set E C {¢ = 0}
and o bandlimited to A then

N w2[K]92f[¢ — k] =0, V£ € 7"
k&2

any 2"d order partial derivative




Annhilation relation for PW linear signals

Prop: If fis PW linear, with edge set E C {¢ = 0}
and o bandlimited to A then

N w2[K]92f[¢ — k] =0, V£ € 7"
k&2

any 2"d order partial derivative

Proofidea: f =g-1q, g linear
product rule x2 9%f = §? Q + 20g - 819 + g - 9219
annihilated by uz



Can extend annihilation relation to a wide class of
plecewise smooth images.

f(x) =) &i(x) - 1a/(x)
i=1

S.T. Dg, = 0 in Qi

|
Any constant coeff.

differential operator




Can extend annihilation relation to a wide class of
plecewise smooth images.

f(x) =) &i(x) - 1a/(x)
i=1

S.T. Dg, = 0 in Qi

Signal Model: Choice of Diff. Op.:
PW Constant D=V
PW Analytic* D = 0 + jO,

— 1st order

—



Can extend annihilation relation to a wide class of
plecewise smooth images.

f(x) =) &i(x) - 1a/(x)
i=1

S.T. Dg, = 0 in Qi

Signal Model: Choice of Diff. Op.: -
PW Constant D=V L e
PW Analytic* D = 0 +jOy ]
PW Harmonic D=A .
PW Linear D = {Oxx;, Oxy, Oyy }




Can extend annihilation relation to a wide class of
plecewise smooth images.

f(x) =) &i(x) - 1a/(x)
i=1

S.T. Dg, = 0 in Qi

Signal Model: Choice of Diff. Op.: -
PW Constant D=V L e
PW Analytic* D = 0 +jOy ]
PW Harmonic D=A .
PW Linear D = {Oxx; Oxy, Oyy } |

PW Polynomial D = {909} a|=n } nth order



Sampling theorems:

Necessary and sufficient number of Fourier samples for
1. Unique recovery of edge set/annihilating polynomial
2. Unique recovery of full signal given edge set

— Not possible for PW analytic, PW harmonic, etc.

— Prefer PW polynomial models

=» Focus on 2-D PW constant signals



Challenges to proving uniqueness

1-D FRI Sampling Theorem [Vetterli et al., 2002]:
A continuous-time PWC signal with K jumps can be

uniquely recovered from 2K+1 uniform Fourier samples.

Proof (a la Prony’s Method):

Form Toeplitz matrix T from samples, use uniqueness of

Vandermonde decomposition: T = VDV"

“Caratheodory Parametrization”



Challenges proving uniqueness, cont.

Extends to n-D if singularities isolated [Sidiropoulos, 2001]
F ~ : .
—_> flk] = Z aje 12N
i

Not true In our case--singularities supported on curves:

F = —i27k-

—> VIflk] :j{ e 127k ds
oQ

Requires new techniques:

— Spatial domain interpretation of annihilation relation

— Algebraic geometry of trigonometric polynomials



Minimal (Trigonometric) Polynomials
Define deg(x) = (K, L) to be the dimensions of the

smallest rectangle containing the Fourier support of [

1 (x) K

Prop: Every zero-set of a trig. polynomial C with no
Isolated points has a unique real-valued trig. polynomial Lo
of minimal degree such thatif C = {u = 0}

then deg(po) < deg(p)and p =~ - uo

Degree of min. poly. = analog of sparsity/complexity of edge set



Proof idea: Pass to Real Algebraic Plane Curves

Zero-sets of trig polynomials of degree (K,L)
are in 1-to-1 correspondence with

Real algebraic plane curves of degree (K,L)

/

y Conformal 7

e change of
/ﬁ variables /)
\ <€ > C N
N N\

\\

Tz \\ Rz
p(z, w) = 0; p(t,s) = 0;



Uniqueness of edge set recovery

Theorem: If f is PWC* with edge set E = {u = 0}
with 1 minimal and bandlimited to A then

c = u is the unique solution to

Y " c[k]VF[€ — k] = 0 for all £ € 2A
ke

*Some geometric restrictions apply

Requires samples
CZ* of f in3A
to build equations




Current Limitations to Uniqueness Theorem

« Gap between necessary and sufficient # of samples:

3A 1.7A
A
Sufficient Necessary

« Restrictions on geometry of edge sets: non-intersecting

S O¢¥

{n =0} {p =0}



Uniqueness of signal (given edge set)

Theorem: If f is PWC* with edge set E = {u = 0}
with & minimal and bandlimited to A then
g = f is the unique solution to
p-Vg=0 st flk]=glk],ker
when the sampling set I' O 3A

*Some geometric restrictions apply



Uniqueness of signal (given edge set)

Theorem: If f is PWC* with edge set E = {u = 0}
with & minimal and bandlimited to A then
g = f is the unique solution to
p-Vg=0 st flk]=glk],ker
when the sampling set I' O 3A

*Some geometric restrictions apply

Equivalently,
f = argmin ||p - Vgl|| s.t. flk] =g[k],k €T
g



Summary of Proposed
Off-the-Grid Framework

Extend Prony/FRI methods to recover
multidimensional singularities (curves, surfaces)

Unique recovery from uniform Fourier samples:
# of samples proportional to degree of edge set
polynomial

3
f’ [

Two-stage recovery
1. Recover edge set by solving linear system

2. Recover amplitudes



Summary of Proposed
Off-the-Grid Framework

« Extend Prony/FRI methods to recover
multidimensional singularities (curves, surfaces)

« Unique recovery from uniform Fourier samples:
# of samples proportional to degree of edge set
polynomial

3
f’ [

 Two-stage recovery

1. Recover edge set by solving linear system
(Robust?)

2. Recover amplitudes (How?)




New
Off-the-Grid
Imaging
Framework:
Algorithms



Two-stage Super-resolution MRI Using Off-the-Grid
Piecewise Constant Signal Model [O. & Jacob, ISBI 2015]

1. Recover edge set 2. Recover amplitudes

Discretize

HR OUTPUT

LR INPUT

Spatial
Domain
Recovery

Off-the-grid On-the-grid



Matrix representation of annihilation

r c =0

T(Pe,
2-D convolution matrix vector of filter coefficients
(block Toeplitz)

vYv

vYv

= T(f)

gridded center
Fourier samples

2(#shifts) x (filter size)



Basis of algorithms:
Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to A

and the assumed filter support A’ O A then
rank[T(F)] < |N’| — (#shifts A in A')

Fourier domain 1 o HE—> \ 1

Spatial domain  p(X,y) —> ejzﬂ(kx+ly)ﬂ(xa y)



Basis of algorithms:
Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to A

and the assumed filter support A’ O A then
rank[T(F)] < |N’| — (#shifts A in A')

Example: Fourier domain
Shepp-Logan

vvvvvvvv

3000

2500

20001

1500 -

1000

100 200 300 400 500 600 700 800

Rank~ 300

Assumed filter: 33x25
Samples: 65x49



Stage 1: Robust annihilting filter estimation

o (T (F))
1. Compute SVD

3000
2500
H 2000
T(f) = UV
1000
500

100 200 300 400 500 600 700 800

2. ldentify null space

A
[

\
V= [VS VN]& Vn = [Cla coey Cn]
3. Compute sum-of-squares average
p=|F g+ |F e+ -+ |F el

Recover common zeros



Stage 2: Weighted TV Recovery

f = argmin |- Vgl st flk] = glk],k € T

min E w; -
X - ‘
I

=

v /

(Dx)i| + Al|Ax — b]|?

X = discrete spatial domain image
D = discrete gradient
A = Fourier undersampling operator

b = k-space samples

Edge weights



Super-resolution of MRI Medical Phantoms

".ii::;::::}'ﬂ /

(a) Fully sampled (b) IFFT, SNR=10.8dB (c) TV, SNR=16.6dB (d) Proposed, SNR=21.3dB

x4

(e) Fully sampled (f) IFFT, SNR=19.2dB (g) TV, SNR=19.1dB (h) Proposed, SNR=19.0dB

Analytical phantoms from [Guerquin-Kern, 2012]




Super-resolution of Real MRI Data

(b) Fully-sampled (zoom) (c) Zero-padded
SNR=18.3dB

(e) TV reg. (f) Proposed, LSLP

(d) Edge set estimate SNR—18.5dB SNR=18.9dB

(65x65 coeflicients)




Super-resolution of Real MRI Data (Zoom)

(e) TV reg. (f) Proposed, LSLP
SNR=18.5dB SNR=18.9dB




Two Stage Algorithm

1. Recover edge set 2. Recover amplitudes

Discretize

HR OUTPUT

Spatial
Domain
Recovery

Otf-the-grid On-the-grid

Need uniformly sampled region!



One Stage Algorithm [O. & Jacob, SampTA 2015]

Jointly estimate edge set and amplitudes

OUTPUT

Interpolate

Fourier data

Off-the-grid

Accommodate random samples



Pose recovery as a one-stage
structured low-rank matrix completion problem

Recall: T (f) low rank <> f piecewise constant

Toeplitz-like matrix built from Fourier data



Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f



Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f

Toeplltz

1-D Example:

7 (F)

Missing data




Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f

Toeplitz

1-D Example:

7 (F)

Complete matrix




Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f

Toeplitz

1-D Example:

7 (F)

Project




Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f

NP-Hard!



Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f

l Convex Relaxation

min |7 (F)||« s.t. flk] =blk,k € T

' \
Nuclear norm — sum of singular values



Computational challenges

« Standard algorithms are slow:
Apply ADMM = Singular value thresholding (SVT)
Each iteration requires a large SVD:
dim(7 (F)) = (#pixels) x (filter size)
e.g. 10°x 2000

» Real data can be “high-rank”:

x10%

10
e.g.
Singular values of

a(T(F) rank (7 (f)) ~ 1000
Real MR image |

\

0 500 1000 1500 2000 2500

o N E )] o]



Proposed Approach: Adapt IRLS algorithm
» |RLS: Iterative Reweighted Least Squares

« Proposed for low-rank matrix completion in
[Fornasier, Rauhut, & Ward, 2011], [Mohan & Fazel, 2012]

« Adapt to structured matrix case:

(W [T (F)*T () + el]=2 (weight matrix update)

1F «— arg min ||7'(/I?)W% |2 s.t. Pf = b (LS problem)
| f

« Without modification, this approach is slow!



GIRAF algorithm [0. & Jacob, ISBI 2016]

* GIRAF = Generic lterative Reweighted Annihilating Filter

 Exploit convolution structure to simplify IRLS algorithm:
1

r < > A *pi (annihilating filter update)

1f — arg min [F il st Pf = b (LS problem)
\ f

« Condenses weight matrix to single annihilating filter

« Solves problem in original domain

il
R
S N N

=)




initialization

10.7
10.6
10.5

10.4

initialization, Fourier domain

200 400 600 8OO 1000 1200



Convergence speed
of GIRAF

15x15 filter  31x31 filter

Algorithm #iter total- #iter total

...................... SVT SVT 7 110s 11 790 s
GIRAF GIRAF 6 20s 7 44 s
p— =T 1]

Table: iterations/CPU time to
0 200 400 600 reach convergence tolerance of

CPU time (in seconds) NMSE < 104




50% Fourier samples
Random uniform




Summary

- New framework for off-the-grid image recovery

— Extends FRI annihilating filter framework to
piecewise polynomial images

— Sampling guarantees

« Two stage recovery scheme for SR-MRI

— Robust edge mask estimation

— Fast weighted TV algorithm

* One stage recovery scheme for CS-MRI

— Structured low-rank matrix completion mjn ”7'(1:) H .
— Fast GIRAF algorithm f



Future Directions

« Focus: One stage recovery scheme for CS-MRI

— Structured low-rank matrix completion  1in ”T(/f\) H*
f

Recovery guarantees for random sampling?

What is the optimal random sampling scheme?




Thank Youl!
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