Motivation	Background	Problem Formulation	Our Algorithm	Experiments	Conclusion
	I ow-rank	Matrix Comple	tion under	Monotonia	-
	Lott rank r				
		Transforr	nation		
				1 14/11	

Laura Balzano, with Ravi Sastry Ganti and Rebecca Willett

University of Michigan and University of Wisconsin, Madison

Michigan Communications and Signal Processing Seminar May 2016

・ロト ・回ト ・ヨト ・

University of Michigan

Transformation

Two common hurdles for handling high-dimensional data:

Our observations are incomplete: missing data.

Our observations are indirect: we observe only some unknown transformation of some true phenomenon of interest.

Can we recover the matrix of interest?

YES! We leverage low-rank structure in the true signal and the transformation's smoothness and monotonicity.

< ∃ >

University of Michigan

Motivation		Problem Formulation	Our Algorithm	Experiments	Conclusion
Overvie	21/1				

- 2 Background
- Problem Formulation
- Our Algorithm
- **5** Experiments

▲□▶▲圖▶▲불▶▲불▶▲팀⊨ 釣�♡

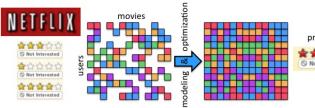
University of Michigan

Monotonic Low-Rank Matrix Completion

Laura Balzano

Our Algorithm

Example 1: Recommender Systems



prediction

三日 のへで

Laura Balzano

University of Michigan

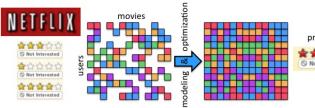
Example 1: Recommender Systems

Laura Balzano

University of Michigan

Our Algorithm

Example 1: Recommender Systems



prediction

三日 のへで

Laura Balzano

University of Michigan

Example 2: Blind Sensor Calibration

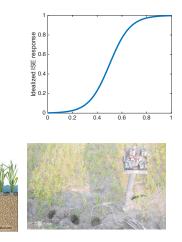
□▶ 《御▶ 《봄▶ 《봄▶ 봄]봄 ') 옷(~

University of Michigan

Laura Balzano

Example 2: Blind Sensor Calibration

Ion Selective Electrodes have a nonlinear response to their ions (pH, ammonium, calcium, etc)



Laura Balzano

Monotonic Low-Rank Matrix Completion

University of Michigan

Motivation	Background	Problem Formulation	Our Algorithm	Experiments	Conclusion
Backgro	ound				

- Single Index Model
- Low-rank Matrix Completion

・ロ・・師・・聞・・聞き うらの

University of Michigan

Laura Balzano

Suppose we have predictor variables x and response variables y, and we seek a transformation g and vector w relating the two such that

$$\mathbb{E}[y|x] = g\left(x^{T}w\right) \; .$$

- Generalized Linear Model: g is known, y|x are RVs from an exponential family distribution parameterized by w.
 - Includes linear regression, log-linear regression, and logistic regression
- Single Index Model: Both g and w are unknown.

(日) (同) (三) (

We seek a transformation g and vector w such that

$$\mathbb{E}[y|x] = g\left(x^{\mathsf{T}}w\right)$$

Theorem ([Kalai and Sastry, 2009], [Kakade et al., 2011])

Suppose $(x_i, y_i) \in \mathbb{B}_n \times [0, 1]$, i = 1, ..., p are draws from a distribution where $\mathbb{E}[y|x] = g(x^T w)$ for monotonic *G*-Lipschitz g and $||w|| \le 1$. There is a poly $(1/\epsilon, \log(1/\delta), n)$ time algorithm that, given any $\delta, \epsilon > 0$, with probability $\ge 1 - \delta$ outputs $h(x) = \hat{g}(\hat{w}^T x)$ with

$$err(h) = \mathbb{E}_{y|x}[(g(x^Tw) - h(x))^2] < \epsilon$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Michigan

Single Index Model Learning

Algorithm 1 Lipshitz-Isotron Algorithm [Kakade et al., 2011]

Given
$$T > 0$$
, $(x_i, y_i)_{i=1}^p$;
Set $w^{(1)} := 1$;
for $t = 1, 2, ..., T$ do
Update g using Lipschitz-PAV: $g^{(t)} = LPAV((x_i^T w^{(t)}, y_i)_{i=1}^p)$.
Update w using gradient descent:

$$w^{(t+1)} = w^{(t)} + \frac{1}{p} \sum_{i=1}^{p} \left(y_i - g^{(t)}(x_i^T w^{(t)}) \right) x_i$$

• • • • • • • •

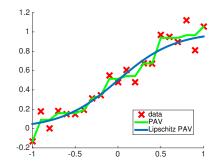
University of Michigan

end for

Laura Balzano

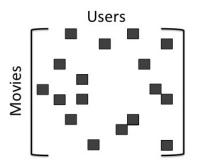
Lipschitz Pool Adjacent Violator

- The Pool Adjacent Violator (PAV) algorithm pools points and averages to minimize mean squared error $g(x_i) - y_i$. (PAV)
- L-PAV adds the additional constraint of a given Lipschitz constant.



Laura Balzano

We have an $n \times m$, rank r matrix X. However, we only observe a subset of the entries, $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, m\}$.



Laura Balzano

University of Michigan

Low-rank Matrix Completion

We have an $n \times m$, rank r matrix X. However, we only observe a subset of the entries, $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, m\}$.

We may find a solution by solving the following NP-hard optimization:

> minimize rank(M)subject to $M_{\Omega} = X_{\Omega}$

> > University of Michigan

< ∃ >

Laura Balzano

We have an $n \times m$, rank r matrix X. However, we only observe a subset of the entries, $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, m\}$.

Or we may solve this convex problem:

minimize
$$||M||_* = \sum_{i=1}^n \sigma_i(M)$$

subject to $M_\Omega = X_\Omega$

Exact recovery guarantees: X is exactly low-rank and incoherent. MSE guarantees: X is nearly low-rank with bounded $(r+1)^{th}$ singular value.

University of Michigan

Low-rank Matrix Completion Algorithms

There are a plethora of algorithms to solve the nuclear norm problem or reformulations.

- LMaFit, APGL, FPCA
- Singular value thresholding: iterated SVD, SVT, FRSVT
- Grassmannian: OptSpace, GROUSE

Laura Balzano

High-rank Matrices

For Z low-rank,

$$Y_{ij} = g(Z_{ij}) = \frac{1}{1 + \exp^{-\gamma Z_{ij}}}$$
, Y has full rank.
 $Y_{ij} = g(Z_{ij}) = \text{quantize_to_grid}(Z_{ij})$, Y has full rank.

・ロト ・回ト ・ヨト

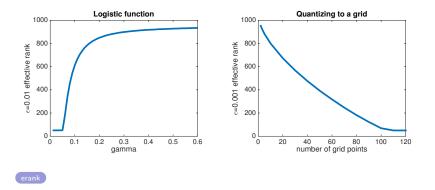
문 문

University of Michigan

Laura Balzano

High-rank Matrices: Effective rank

These matrices even have high effective rank. For a rank-50, 1000x1000 matrix:



University of Michigan

Laura Balzano

Problem Formulation

Our model is as follows:

- Low-rank matrix $Z^* \in \mathbb{R}^{n \times m}$ with $m \le n$ and (for now, known) rank $r \ll m$.
- Lipschitz link function $g^*: \mathbb{R} \to \mathbb{R}$, monotonic, Lipschitz
- Noise matrix $N \in \mathbb{R}^{n \times m}$ with iid entries $\mathbb{E}[N] = 0$.
- Samples of matrix entries $\Omega \in \{1, ..., n\} \times \{1, ..., m\}$ is a multiset, sampled independently with replacement.

We observe $Y_{ij} = g^*(Z^*_{ij}) + N_{ij}$ for $(i,j) \in \Omega$

and we wish to recover g^* , Z^* .

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 ののの

Optimization Formulation

$$\begin{array}{ll} \min_{g,Z} & \sum_{\Omega} (g(Z_{i,j}) - Y_{i,j})^2 \\ \text{subj. to} & g: \mathbb{R} \to \mathbb{R} \text{ is Lipschitz and monotone} \\ & \operatorname{rank}(Z) \leq r \end{array}$$

Non-convex in each variable, but we can alternate the standard approaches:

- Use gradient descent and projection onto the low-rank cone for Z.
- Use LPAV for g.

We call this algorithm MMC-LS.

< □ > < 同 >

MMC-LS Algorithm

Algorithm 2 MMC-LS

Given max iterations T > 0, step size $\eta > 0$, rank r, data Y_{Ω} Init $\hat{g}^{(0)}(z) = \frac{|\Omega|}{mn}z$, $\hat{Z}^{(0)} = \frac{mn}{|\Omega|}Y_0$, where Y_0 zero-filled Y_{Ω} . for t = 1, 2, ..., T do Update \hat{Z} using gradient descent:

$$\hat{Z}_{i,j}^{(t)} = \hat{Z}_{i,j}^{(t-1)} - \eta \left(\hat{g}^{t-1} \left(\hat{Z}_{i,j}^{(t-1)} \right) - Y_{i,j} \right) (\hat{g}^{t-1})' (\hat{Z}_{i,j}^{(t-1)}) \mathbb{I}_{(i,j) \in \Omega}$$

Project:
$$\hat{Z}^{(t)} = \mathcal{P}_r(\hat{Z}^{(t)})$$

Update \hat{g} : $\hat{g}^{(t)} = LPAV\left(\{(\hat{Z}^{(t)}_{i,j}, Y_{i,j}) \text{ for } (i,j) \in \Omega\}\right)$.
nd for

University of Michigan

Laura Balzano

e

Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a differentiable function that satisfies $\Phi' = g^*$. Since g^* is monotonic, Φ is convex. Consider:

$$L(\Phi, Z) = \sum_{(i,j)\in\Omega} \Phi(Z_{i,j}) - Y_{i,j}Z_{i,j}$$

Differentiating with respect to Z we get that a minimizer satisfies $\sum_{(i,j)\in\Omega} g^*(Z_{i,j}) - Y_{i,j} = 0$; in other words, Z^* is a minimizer in expectation. So $L(\Phi, Z)$ is a calibrated loss for our problem.

(日) (同) (三) (

University of Michigan

Laura Balzano

Algorithm 3 MMC-calibrated

Given max iterations T > 0, step size $\eta > 0$, rank r, data Y_{Ω} lnit $\hat{g}^{(0)}(z) = \frac{|\Omega|}{mn} z$, $\hat{Z}^{(0)} = \frac{mn}{|\Omega|} Y_0$, where Y_0 zero-filled Y_{Ω} . for t = 1, 2, ..., T do Update \hat{Z} using gradient descent:

$$\hat{Z}_{i,j}^{(t)} = \hat{Z}_{i,j}^{(t-1)} - \eta \left(\hat{g}^{t-1} \left(\hat{Z}_{i,j}^{(t-1)} \right) - Y_{i,j} \right) \mathbb{I}_{(i,j) \in \Omega}$$

Project: $\hat{Z}^{(t)} = \mathcal{P}_r(\hat{Z}^{(t)})$ Update g: $g^{(t)} = LPAV\left(\{(\hat{Z}^{(t)}_{i,j}, Y_{i,j}) \text{ for } (i,j) \in \Omega\}\right)$. end for

University of Michigan

(日) (同) (三) (

Laura Balzano

Motivation		Problem Formulation	Our Algorithm	Experiments	Conclusion
Remarks	5				

MMC consists of three steps: gradient descent, projection, and LPAV.

- The gradient descent step requires a step size parameter η; we chose a small constant stepsize by cross validation.
- The projection requires rank *r*. For our implementation, we started with a small *r* and increased it, in the same vein as [Wen et al., 2012].
- LPAV is the solution of a QP. Ravi developed an ADMM implementation as well.

MSE Analysis of MMC-c

Let
$$\hat{M} = \hat{g}(\hat{Z})$$
 and $M^* = g^*(Z^*)$.
Define the MSE as

$$MSE(\hat{M}) = \mathbb{E}\left[rac{1}{mn}\sum_{i=1}^{n}\sum_{j=1}^{m}\left(\hat{M}_{i,j}-M_{i,j}^{*}
ight)^{2}
ight]$$

University of Michigan

ъ.

A B > 4
 B > 4
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

2

Monotonic Low-Rank Matrix Completion

Laura Balzano

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration [Ganti et al., 2015])

Let $||Z^*|| = O(\sqrt{n})$ and $\sigma_{r+1}(Y) = \tilde{O}(\sqrt{n})$ with high probability. Let $\alpha = ||M^* - Z^*||$. Furthermore, assume that elements of Z^* and Y are bounded in absolute value by 1. Then the MSE of one step of MMC (T = 1) is bounded by

$$MSE(\hat{M}) \le O\left(\sqrt{\frac{r}{m}} + \frac{mn}{|\Omega|^{3/2}} + \sqrt{\frac{r\alpha}{m\sqrt{n}}\left(1 + \frac{\alpha}{\sqrt{n}}\right)}\right)$$

University of Michigan

★ ∃ >

Laura Balza<u>no</u>

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration [Ganti et al., 2015])

In addition to the previous assumptions, let

$$\alpha = \|M^* - Z^*\| = O(\sqrt{n}).$$

Then the MSE of one step of MMC is bounded by

$$MSE(\hat{M}) \le O\left(\sqrt{rac{r}{m}} + rac{mn}{|\Omega|^{3/2}}
ight)$$

University of Michigan

< A

∢ ∃ ▶

Monotonic Low-Rank Matrix Completion

Laura Balzano

 Z^* is 30 \times 20 and rank 5.

N = 0

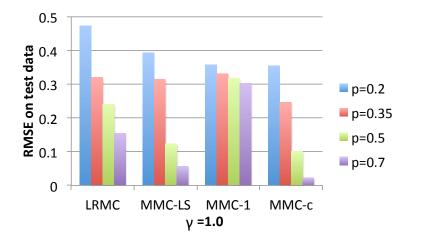
Toy ISE calibration function: $g^*(z) = 1/(1 + \exp^{-\gamma z})$ Vary $\gamma = 1, 10, 40$.

Vary probability of observation p = .2, .35, .5, .7.

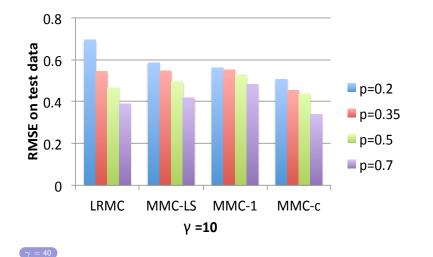
ъ.

(日) (同) (三) (

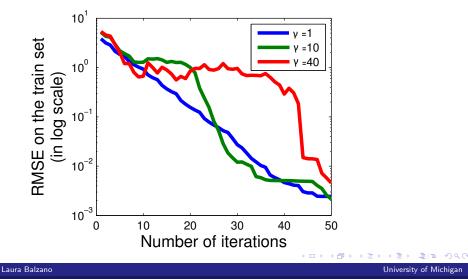
Motivation	Problem Formulation	Our Algorithm	Experiments	Conclusion



Motivation	Problem Formulation	Our Algorithm	Experiments	Conclusion



< 🗗 🕨



Motivation		Problem Formulation	Our Algorithm	Experiments	Conclusion
Real Da	ata				

- Paper recommendation: 3426 features from 50 scholars' research profiles.
- Jester: 4.1 Million continuous ratings (-10.00 to +10.00) of 100 jokes from 73,421 users.
- Movie lens: 100,000 ratings from 1000 users on 1700 movies.
- Cameraman: Dictionary learning on patches of the image.

Dataset	Dimension	Ω	$r_{0.01}(Y)$
PaperReco	3426×50	34294 (20%)	47
Jester-3	24938×100	124690 (5%)	66
ML-100k	1682×943	64000 (4%)	391
Cameraman	1536×512	157016 (20%)	393

Real Data Performance

RMSE on a held-out test set:

Dataset	$ \Omega /mn$	LMaFit-A	MMC-c $T = 1$	MMC-c
PaperReco	20%	0.4026	0.4247	0.2965
Jester-3	5%	6.8728	5.327	5.2348
ML-100k	4%	3.3101	1.388	1.1533
Cameraman	20%	0.0754	0.1656	0.06885

University of Michigan

-

A B > 4
 B > 4
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

3

Laura Balzano

- Monotonicity of g* and low-rank structure on Z* are enough to allow joint estimation.
- A natural alternating minimization algorithm does well.
- Next steps:
 - Estimating different g* for different columns, e.g., users or sensors.
 - Understanding when it is possible to recover relative differences or order information of entries of Z^* instead of values of $M^* = g^*(Z^*)$.
 - Further algorithmic guarantees.

• • • • • • • • • • • • •

Laura Balzano

Motivation	Problem Formulation	Our Algorithm	Experiments	Conclusion

Thank you! Questions?

Ganti, R. S., Balzano, L., and Willett, R. (2015).

Matrix completion under monotonic single index models.

In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing Systems 28, pages 1864–1872. Curran Associates, Inc.

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011).

Efficient learning of generalized linear and single index models with isotonic regression. In Advances in Neural Information Processing Systems, pages 927–935.

Kalai, A. T. and Sastry, R. (2009).

The isotron algorithm: High-dimensional isotonic regression. In COLT.

Wen, Z., Yin, W., and Zhang, Y. (2012).

Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm.

Mathematical Programming Computation, 4(4):333-361.

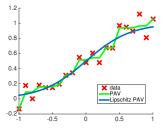
University of Michigan

EL OQO

Laura Balzano

• The Pool Adjacent Violator (PAV) algorithm pools points and averages to solve

$$\arg\min_{\text{monotone }g} \left(\frac{1}{p} \sum_{i=1}^{p} \left(g(x_i) - y_i \right)^2 \right)$$



Back to LPAV.

University of Michigan

Laura Balzano

High-rank Matrices: Effective rank

Definition

The **effective rank** of an $n \times m$ matrix Y, m < n, with singular values σ_j is

$$r_{\epsilon}(Y) = \min\left\{k \in \mathbb{N} : \sqrt{\frac{\sum_{j=k+1}^{m} \sigma_{j}^{2}}{\sum_{j=1}^{m} \sigma_{j}^{2}}} \le \epsilon\right\}$$

Back to Matrix Completion

University of Michigan

< □ > < 同 >

Laura Balzano

