
Motivation Background Problem Formulation Our Algorithm Experiments Conclusion

Low-rank Matrix Completion under Monotonic
Transformation

Laura Balzano, with Ravi Sastry Ganti and Rebecca Willett

University of Michigan and University of Wisconsin, Madison

Michigan Communications and Signal Processing Seminar
May 2016

Laura Balzano University of Michigan

Monotonic Low-Rank Matrix Completion



Motivation Background Problem Formulation Our Algorithm Experiments Conclusion

Low-rank Matrix Completion under Monotonic
Transformation

Two common hurdles for handling high-dimensional data:

Our observations are incomplete: missing data.

Our observations are indirect: we observe only some unknown
transformation of some true phenomenon of interest.

Can we recover the matrix of interest?

YES! We leverage low-rank structure in the true signal and the
transformation’s smoothness and monotonicity.
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Example 1: Recommender Systems
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Example 2: Blind Sensor Calibration
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Example 2: Blind Sensor Calibration

Ion Selective Electrodes have a
nonlinear response to their ions
(pH, ammonium, calcium, etc)
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ABSTRACT
Rapidly deployable sensor networks are portable, reusable,
and can take advantage of a human user in the field attending
to the deployment. Unfortunately, even small disruptions or
problems in collected data must be addressed quickly, as the
overall quantity of data gathered is small relative to long-
term deployments.
In this paper we describe a procedure for calibration and

a system for online fault remediation. Care in the calibration
process for ion selective electrodes used for water quality
assists interpretation of the data. Scientists will have more
confidence in the data obtained from a rapid deployment
if in-field users can detect and compensate for problems
as they occur. We have designed and implemented a tool
for use in the field to detect potential faults and provide
actions to remedy or validate the faulty data. In January of
2006 we deployed 48 sensors over a period of 12 days in
Bangladesh in order to aid in validating a hypothesis on the
mass presence of arsenic in the groundwater. Our system
is based on the the approximately 25,000 measurements we
collected.

1 INTRODUCTION
The presence of arsenic in groundwater has led to
the largest environmental poisoning in history; tens of
millions of people in the Ganges Delta continue to drink
groundwater that is dangerously contaminated with arsenic.
In Bangladesh alone, if consumption of contaminated water
continues, the prevalence of arsenicosis and skin cancer will
be approximately 2,000,000 and 100,000 cases per year,
respectively, and the incidence of death from cancer induced
by arsenic will be approximately 3,000 cases per year [23].
A current working hypothesis is that the influx of

dissolved arsenic into the ground water is greatly enhanced
where irrigation for rice cultivation provides the primary
source of aquifer recharge [15]. To aid in validating this

Figure 1: Depiction of deployment (drawing by XXXXXX).

hypothesis, we accompanied a group of scientists fromMIT,
Stanford, and the Bangladesh University of Engineering and
Technology, to undertake a rapid deployment of a wireless
sensor network in a rice paddy in Bangladesh in January
of 2006. We deployed 48 sensors over a period of 12
days, collecting approximately 25,000 measurements. The
deployment setup is illustrated in Figure 1.

Rapid deployment We discuss this Bangladesh
experiment as a case study in the rapid deployment of
a wireless sensor network (WSN). This model, which holds
great promise for environmental monitoring, has emerged
as one alternative to the traditional long-term, autonomous,
and static WSN deployment model. Rapidly deployable
networks are designed to be quick and simple to deploy; also
they may only be left in place for a relatively short period
of time [2]. Water quality sensing can benefit greatly from
rapidly deployed sensor networks. Although good water
quality is critical for public health, “analysis is still primarily
conducted in a laborious manner by physical collection of a
sample that is analyzed back in a laboratory.” [22] This kind
of data collection and analysis is time consuming, mostly
undirected, and, in many instances, misses the contaminant
events of interest. While a long-term deployment could
simplify collection, it would not be able to respond quickly

1

Figure 3: Top panel is the layout of our deployment in the field. Depths
below ground are indicated on the diagram. Light rectangle corresponds to
a full suite of 7 ISEs, and dark rectangle corresponds to 1 temperature and 1
moisture sensor. Bottom panel is an image of a pylon without a lid deployed
in the rice paddy in Bangladesh.

Pylon Design In addition to choosing sensors for our
deployment, we had to design an enclosure for the mote
system, implement the software, and test the hardware and
software that we would deploy. The first challenge was to
design an enclosure that would protect the motes from the
environment, be easy to deploy, and minimize disturbance
of the soil during the deployment process. At each location,
we wanted to deploy a full suite of sensors at 3 different
depths, in order to characterize the chemistry above, in
middle, and below an iron band that the scientists suspected
was located at an approximate depth of 3 feet. We designed
and deployed the PVC enclosure which houses all the
networking hardware needed for three depths and sits on top
of a column (Figure 3). One suite of sensors included the 7
ISEs listed above and temperature and moisture sensors. The
layout of the sensors and pylons is in Figure 3.
Initially our plan was to deploy all sensors in a single

hole beneath the pylon column. However, placing sensors
at multiple depths disturbed the soil too much, making it
hard to pack down. Thus, we settled on deploying a single
depth of sensors in a hole, and placing the holes as close
together as possible. We could not fit more than 4 ISEs in
one hole, and the moisture sensors were isolated so that
their electromagnetic radiation would not interfere with the
electric potential measured by the ISEs. Thus, we dug three
holes per depth to accommodate a full suite of sensors. When
the pylon is deployed, the sensor cables come out from the
bottom of the pylon and extend to the satellite holes.
To aid in ease of deployment, we are developing javelin

pylons [4] to replace the pylons we used in Bangladesh.

These pylons are even easier to deploy as the pylon column
itself contains the sensors. The javelin narrows at the bottom
so that it can be driven into the ground, minimizing the
impact on the soil and avoiding the need to dig holes for the
sensors or for the pylon structure itself.

Networking The enclosure of the pylon housed the
networking and sensor-related hardware. We used Mica2
motes connected to a MDA300 sensor-board to collect data
from the sensors in the pylon. The base-station, a Stargate6
powered by a car battery, collected data from the network.
We used the Extensible Sensing System [5] for our network
stack; this included multihop data collection at a centralized
sink, time synchronization, a network debugging tool [6],
and a disruption tolerant networking layer [3] based on delay
tolerant networking [8].
Since improving the quantity of data is especially

important for rapid deployments, the disruption tolerant
networking layer was critical for our success. While
this layer does not provide end-to-end reliability, it
can handle longer-term route disruptions that MAC-layer
retransmissions cannot. If a valid route to the base station
is not present or the MAC layer fails to successfully transmit
a packet to its next hop, the disruption tolerant networking
layer saves the packet to local storage [3]. Writing data to
local flash consumes power, but the additional reliability
justified the tradeoff in practice. For example, many nights
we were not able to deploy our base station due to
security issues (even the car battery was vulnerable to theft)
and various software problems. However, we lost minimal
data as a result of these issues or any other base station
outages, eventually receiving 76% of the expected packets—
a relatively high yield in the spectrum of sensor network
deployments [19].

4 CALIBRATION AND TESTING
Before deploying our sensor network in Bangladesh we
spent 2 months in the lab calibrating and testing our system.
Calibration is the process of mapping a sensor’s measured
output to an estimate of the property being sensed. The
calibration process for the ISEs is the most involved of all the
sensors we used in Bangladesh, so we focus our discussion
on them.
Mistakes in the process of calibrating the sensor can result

in large margins of error when translating sensor readings.
Thus, proper pre-deployment calibration is a critical step in
enhancing a user’s confidence in the subsequent collected
data.
The accuracy requirements of the application must be

considered during this step. As described in Section 3, the
purpose of our deployment was to collect data to learn more
about the groundwater chemistry in the shallow soil of the
rice paddies. We were interested in diurnal behavior of the
ionic content. Thus, we needed a good characterization of
the sensor’s response to changing ionic concentrations.

6All of our networking hardware is manufactured by Crossbow, Inc.
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Background

Single Index Model

Low-rank Matrix Completion
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Single Index Model

Suppose we have predictor variables x and response variables y ,
and we seek a transformation g and vector w relating the two such
that

E[y |x ] = g
(
xTw

)
.

Generalized Linear Model: g is known, y |x are RVs from an
exponential family distribution parameterized by w .

Includes linear regression, log-linear regression, and logistic
regression

Single Index Model: Both g and w are unknown.
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Single Index Model Learning

We seek a transformation g and vector w such that

E[y |x ] = g
(
xTw

)
.

Theorem ([Kalai and Sastry, 2009], [Kakade et al., 2011])

Suppose (xi , yi ) ∈ Bn × [0, 1], i = 1, . . . , p are draws from a
distribution where E[y |x ] = g(xTw) for monotonic G -Lipschitz g
and ‖w‖ ≤ 1. There is a poly(1/ε, log(1/δ), n) time algorithm
that, given any δ, ε > 0, with probability ≥ 1− δ outputs
h(x) = ĝ(ŵT x) with

err(h) = Ey |x [(g(xTw)− h(x))2] < ε
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Single Index Model Learning

Algorithm 1 Lipshitz-Isotron Algorithm [Kakade et al., 2011]

Given T > 0, (xi , yi )
p
i=1;

Set w (1) := 1;
for t = 1, 2, . . . ,T do

Update g using Lipschitz-PAV: g (t) = LPAV
(
(xTi w (t), yi )

p
i=1

)
.

Update w using gradient descent:

w (t+1) = w (t) +
1

p

p∑
i=1

(
yi − g (t)(xTi w (t))

)
xi

end for
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Lipschitz Pool Adjacent Violator

The Pool Adjacent Violator
(PAV) algorithm pools
points and averages to
minimize mean squared error
g(xi )− yi . PAV

L-PAV adds the additional
constraint of a given
Lipschitz constant.
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Low-rank Matrix Completion

We have an n ×m, rank r matrix X . However, we only observe a
subset of the entries, Ω ⊂ {1, . . . , n} × {1, . . . ,m}.
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Low-rank Matrix Completion

We have an n ×m, rank r matrix X . However, we only observe a
subset of the entries, Ω ⊂ {1, . . . , n} × {1, . . . ,m}.
We may find a solution by solving the following NP-hard
optimization:

minimize
M

rank(M)

subject to MΩ = XΩ
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Low-rank Matrix Completion

We have an n ×m, rank r matrix X . However, we only observe a
subset of the entries, Ω ⊂ {1, . . . , n} × {1, . . . ,m}.
Or we may solve this convex problem:

minimize
M

‖M‖∗ =
n∑

i=1

σi (M)

subject to MΩ = XΩ

Exact recovery guarantees: X is exactly low-rank and incoherent.
MSE guarantees: X is nearly low-rank with bounded (r + 1)th

singular value.
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Low-rank Matrix Completion Algorithms

There are a plethora of algorithms to solve the nuclear norm
problem or reformulations.

LMaFit, APGL, FPCA

Singular value thresholding:
iterated SVD, SVT, FRSVT

Grassmannian: OptSpace,
GROUSE
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High-rank Matrices

For Z low-rank,

Yij = g(Zij) = 1

1+exp
−γZij

, Y has full rank.

Yij = g(Zij) = quantize to grid(Zij), Y has full rank.
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High-rank Matrices: Effective rank

These matrices even have high effective rank.
For a rank-50, 1000x1000 matrix:

gamma
0 0.1 0.2 0.3 0.4 0.5 0.6

ǫ
=

0
.0

1
 e

ff
e

c
ti
v
e

 r
a

n
k

0

200

400

600

800

1000
Logistic function

number of grid points
0 20 40 60 80 100 120

ǫ
=

0
.0

0
1

 e
ff

e
c
ti
v
e

 r
a

n
k

0

200

400

600

800

1000
Quantizing to a grid

erank

Laura Balzano University of Michigan

Monotonic Low-Rank Matrix Completion



Motivation Background Problem Formulation Our Algorithm Experiments Conclusion

Problem Formulation

Our model is as follows:

Low-rank matrix Z ∗ ∈ Rn×m with m ≤ n and (for now,
known) rank r � m.

Lipschitz link function g∗ : R→ R, monotonic, Lipschitz

Noise matrix N ∈ Rn×m with iid entries E[N] = 0.

Samples of matrix entries Ω ∈ {1, . . . , n} × {1, . . . ,m} is a
multiset, sampled independently with replacement.

We observe Yij = g∗(Z ∗ij ) + Nij for (i , j) ∈ Ω

and we wish to recover g∗, Z ∗.
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Optimization Formulation

min
g ,Z

∑
Ω

(g(Zi ,j)− Yi ,j)
2

subj. to g : R→ R is Lipschitz and monotone

rank(Z ) ≤ r

Non-convex in each variable, but we can alternate the standard
approaches:

Use gradient descent and projection onto the low-rank cone
for Z .

Use LPAV for g .

We call this algorithm MMC-LS.

Laura Balzano University of Michigan

Monotonic Low-Rank Matrix Completion



Motivation Background Problem Formulation Our Algorithm Experiments Conclusion

MMC-LS Algorithm

Algorithm 2 MMC-LS

Given max iterations T > 0, step size η > 0, rank r , data YΩ

Init ĝ (0)(z) = |Ω|
mnz , Ẑ (0) = mn

|Ω|Y0, where Y0 zero-filled YΩ.
for t = 1, 2, . . . ,T do

Update Ẑ using gradient descent:

Ẑ
(t)
i ,j = Ẑ

(t−1)
i ,j −η

(
ĝ t−1

(
Ẑ

(t−1)
i ,j

)
− Yi ,j

)
(ĝ t−1)′(Ẑ

(t−1)
i ,j )I(i ,j)∈Ω

Project: Ẑ (t) = Pr (Ẑ (t))

Update ĝ : ĝ (t) = LPAV
(
{(Ẑ (t)

i ,j ,Yi ,j) for (i , j) ∈ Ω}
)

.

end for
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Optimization of Calibrated Loss

Let Φ : R→ R be a differentiable function that satisfies Φ′ = g∗.
Since g∗ is monotonic, Φ is convex. Consider:

L(Φ,Z ) =
∑

(i ,j)∈Ω

Φ(Zi ,j)− Yi ,jZi ,j

Differentiating with respect to Z we get that a minimizer satisfies∑
(i ,j)∈Ω g∗(Zi ,j)− Yi ,j = 0; in other words, Z ∗ is a minimizer in

expectation. So L(Φ,Z ) is a calibrated loss for our problem.
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MMC-c Algorithm

Algorithm 3 MMC-calibrated

Given max iterations T > 0, step size η > 0, rank r , data YΩ

Init ĝ (0)(z) = |Ω|
mnz , Ẑ (0) = mn

|Ω|Y0, where Y0 zero-filled YΩ.
for t = 1, 2, . . . ,T do

Update Ẑ using gradient descent:

Ẑ
(t)
i ,j = Ẑ

(t−1)
i ,j − η

(
ĝ t−1

(
Ẑ

(t−1)
i ,j

)
− Yi ,j

)
I(i ,j)∈Ω

Project: Ẑ (t) = Pr (Ẑ (t))

Update g : g (t) = LPAV
(
{(Ẑ (t)

i ,j ,Yi ,j) for (i , j) ∈ Ω}
)

.

end for
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Remarks

MMC consists of three steps: gradient descent, projection, and
LPAV.

The gradient descent step requires a step size parameter η; we
chose a small constant stepsize by cross validation.

The projection requires rank r . For our implementation, we
started with a small r and increased it, in the same vein as
[Wen et al., 2012].

LPAV is the solution of a QP. Ravi developed an ADMM
implementation as well.
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MSE Analysis of MMC-c

Let M̂ = ĝ(Ẑ ) and M∗ = g∗(Z ∗).
Define the MSE as

MSE (M̂) = E

 1

mn

n∑
i=1

m∑
j=1

(
M̂i ,j −M∗i ,j

)2
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MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration [Ganti et al., 2015])

Let ‖Z ∗‖ = O(
√
n) and σr+1(Y ) = Õ(

√
n) with high probability.

Let α = ‖M∗ − Z ∗‖. Furthermore, assume that elements of Z ∗

and Y are bounded in absolute value by 1.
Then the MSE of one step of MMC (T = 1) is bounded by

MSE (M̂) ≤ O

(√
r

m
+

mn

|Ω|3/2
+

√
rα

m
√
n

(
1 +

α√
n

))
.
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MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration [Ganti et al., 2015])

In addition to the previous assumptions, let

α = ‖M∗ − Z ∗‖ = O(
√
n) .

Then the MSE of one step of MMC is bounded by

MSE (M̂) ≤ O

(√
r

m
+

mn

|Ω|3/2

)
.
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Synthetic Data

Z ∗ is 30× 20 and rank 5.

N = 0

Toy ISE calibration function: g∗(z) = 1/(1 + exp−γz)

Vary γ = 1, 10, 40.

Vary probability of observation p = .2, .35, .5, .7.
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Synthetic Data
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Synthetic Data
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Synthetic Data
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Real Data

Paper recommendation: 3426 features from 50 scholars’
research profiles.

Jester: 4.1 Million continuous ratings (-10.00 to +10.00) of
100 jokes from 73,421 users.

Movie lens: 100,000 ratings from 1000 users on 1700 movies.

Cameraman: Dictionary learning on patches of the image.

Dataset Dimension |Ω| r0.01(Y )

PaperReco 3426 × 50 34294 (20%) 47
Jester-3 24938 × 100 124690 (5%) 66
ML-100k 1682 × 943 64000 (4%) 391

Cameraman 1536 × 512 157016 (20%) 393
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Real Data Performance

RMSE on a held-out test set:

Dataset |Ω|/mn LMaFit-A MMC-c T = 1 MMC-c

PaperReco 20% 0.4026 0.4247 0.2965
Jester-3 5% 6.8728 5.327 5.2348
ML-100k 4% 3.3101 1.388 1.1533

Cameraman 20% 0.0754 0.1656 0.06885
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Conclusion

Monotonicity of g∗ and low-rank structure on Z ∗ are enough
to allow joint estimation.

A natural alternating minimization algorithm does well.

Next steps:

Estimating different g∗ for different columns, e.g., users or
sensors.
Understanding when it is possible to recover relative
differences or order information of entries of Z∗ instead of
values of M∗ = g∗(Z∗).
Further algorithmic guarantees.
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Thank you! Questions?

Ganti, R. S., Balzano, L., and Willett, R. (2015).

Matrix completion under monotonic single index models.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural
Information Processing Systems 28, pages 1864–1872. Curran Associates, Inc.

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011).

Efficient learning of generalized linear and single index models with isotonic regression.
In Advances in Neural Information Processing Systems, pages 927–935.

Kalai, A. T. and Sastry, R. (2009).

The isotron algorithm: High-dimensional isotonic regression.
In COLT.

Wen, Z., Yin, W., and Zhang, Y. (2012).

Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation
algorithm.
Mathematical Programming Computation, 4(4):333–361.
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The Pool Adjacent Violator (PAV)
algorithm pools points and
averages to solve

arg min
monotone g

(
1

p

p∑
i=1

(g(xi )− yi )
2

)
.

Back to LPAV .
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High-rank Matrices: Effective rank

Definition

The effective rank of an n ×m matrix Y , m < n, with singular
values σj is

rε(Y ) = min

k ∈ N :

√√√√∑m
j=k+1 σ

2
j∑m

j=1 σ
2
j

≤ ε

 .

Back to Matrix Completion .
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Synthetic Data
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