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Improving X-ray CT image reconstruction

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

Today’s talk: less about computation, more about image quality
Right image used edge-preserving regularization
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Accelerating MR imaging

(a) 4× under-sampled MR k-
space
(b) zero-filled reconstruction
(c) “compressed sensing” recon-
struction with TV regularization
(d) adaptive dictionary learning
regularization [1, Fig. 10]
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Other ill-posed inverse problems

y = Ax + ε

I compressed sensing (A random, wide)
I deblurring (restoration) (A Toeplitz, wide?)
I in-painting (A subset of rows of I)
I denoising (not ill posed) (A = I)
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Inverse problems via MAP estimation

Unknown
image

x
→ System model

p(y | x) → Data
y → Estimator → x̂

If we have a prior p(x), then the MAP estimate is:

x̂ = arg max
x

p(x | y) = arg max
x

log p(y | x) + log p(x) .

For gaussian measurement errors and linear model:

− log p(y | x) ≡ 1
2 ‖y − Ax‖2

W

where ‖y‖2
W = y ′W y and W−1 = Cov{y | x} is known

(A from physics, W from statistics)
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Priors for MAP estimation

I If all images x are “plausible” (have non-zero probability) then

p(x) ∝ e−R(x) =⇒ − log p(x) ≡ R(x)

(from fantasy / imagination / wishful thinking)

I MAP ≡ regularized weighted least-squares (WLS) estimation:

x̂ = arg max
x

log p(y | x) + log p(x)

= arg min
x

1
2 ‖y − Ax‖2

W + R(x)

I A regularizer R(x), aka log prior, is essential for high-quality
solutions to ill-conditioned / ill-posed inverse problems.

I Why ill-posed? High ambitions...
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Example of ill-conditioned inverse problem

Two-pixel, two-ray “X-ray tomography” model:

x1 x2
y1

y2

A =
[

1 1
0 0.1

]
x =

[
x1
x2

]

cond
(
A′A

)
≈ 400 A is (roughly) square - somewhat typical

log-likelihood log p(y |x):

 

y1 x1

x2

0

1
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Subspace model: Alternative to regularization

Assuming x lies in a sufficiently low-dimensional subspace
could make an inverse problem well conditioned.

x1

x2

Assume x = Dz where D =
[

1
1

]
and z ∈ R1

(z has only one nonzero element so very sparse!?)
Estimate coefficient(s): ẑ = arg minz ‖y − ADz‖2

2 , then x̂ = Dẑ,

where B , AD =
[

2
0.1

]
and cond

(
B′B

)
= 1 which is perfect!
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Why not use subspace models?

Candès and Romberg (2005) [2] used 22 (noiseless) projection
views, each with 256 samples.
22 · 256 = 5632 measured values, vs 2562 = 65536 unknown pixels

Shepp-Logan Phantom

1 256

1

256

4096-dimensional subspace

1 64

1

64

Subspace representation (using pixel basis) is undesirably coarse.
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Classical regularizers

I Tikhonov regularization (IID gaussian prior)
I Roughness penalty (Basic MRF prior)
I Sparsity in ambient space
I Edge-preserving regularization
I Total-variation (TV) regularization
I Black-box denoiser like NLM
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Tikhonov regularization

R(x) = β ‖x‖2
2 x1

x2

x1

x2
 

I Colors show equivalent (normalized) prior p(x) / p(0) = e−R(x)

I Equivalent to IID gaussian prior on x
I Makes any ill-conditioned / ill-posed problem well conditioned
I Ignores correlations between pixels
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Sparsity regularization in ambient space

R(x) = β ‖x‖0 = β
∑

j I{xj 6=0}

 

x1

x2

x1

x2

I Approximate Bayesian interpretation
I Non-convex
I IID =⇒ also ignores correlations
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Sparsity regularization: convex relaxation

R(x) = β ‖x‖1 = β
∑

j |xj | x1

x2

x1

x2
 

I Equivalent to IID Laplacian prior on x
I Also ignores correlations
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Correlation

Shepp-Logan Phantom

1 256

1

256 0.95

1.05

0 1 2

xj

0

1

2

x
j
−
1

Shepp-Logan Pixel Neighbors (dithered)

Caution: Shepp-Logan phantom [3] was designed for testing non-Bayesian methods,
not for designing signal models. Q: What causes the spread??
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Edge-preserving regularization

Neighboring pixels tend to have similar values except near edges:

R(x) = β
∑

j
ψ(xj − xj−1)

Potential function ψ:

t/δ
-3 -1 0 1 3

ψ
(t
)

0

1

x1

x2

x1

x2
 

• Equivalent to improper prior (agnostic to DC value)
• Accounts for spatial correlations, but only very locally
• Used clinically now for low-dose X-ray CT image reconstruction
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Total-variation (TV) regularization
Neighboring pixels tend to have similar values except near edges
(“gradient sparsity”):

R(x) = βTV(x) = β ‖Cx‖1

= β
∑

j
|xj − xj−1|

Potential function ψ:

t

-1 0 1

ψ
(t
)

0

1

x1

x2

x1

x2
 

I Equivalent to improper prior (agnostic to DC value)
I Accounts for correlations, but only very locally
I Well-suited to piece-wise constant Shepp-Logan phantom!
I Used in many academic publications...
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Black-box denoiser as a regularizer

Noisy image→ Denoiser → Denoised image

I Example: Non-local means (NLM)
I Corresponding regularizer [4]–[6]:

R(x) = β
1
2 ‖x − NLM(x)‖2

2

I Encourages self-consistency with denoised version of image
I No evident Bayesian interpretation
I Variable splitting can facilitate minimization [7].
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Many more regularizers / priors

I Transforms: wavelets, curvelets, . . .
I Markov random field models
I Graphical models
I . . .
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Contemporary regularizers

I Convolutional sparsity
I Union of subspaces
I Sparse coding with dictionary
I manifolds? [8]

26 / 45



Convolutional sparsity

Idea:

x [~n] ≈
K∑

k=1
hk [~n] ∗ zk [~n]

• where each hk [~n] is a FIR filter with ‖hk‖ = 1
• and each coefficient image zk [~n] is sparse [9]–[11].

Equivalent matrix-vector representation:

x ≈
K∑

k=1
Hkzk

where Hk is a Toeplitz (or circulant) matrix corresponding to hk .
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Convolutional sparsity: example

0 3
0

0.5
h

1
[n]

Filter

0 10 20 30
0

1

2

z
1
[n]

Coefficients

0 3
0

0.5
h

2
[n]

0 10 20 30
0

1

2

z
2
[n]

0 3
0

0.5
h

3
[n]

0 10 20 30
0

1

2

z
3
[n]

n

0 10 20 30
0

0.5

x[n]

x [~n] ≈
∑K

k=1 hk [~n] ∗ zk [~n]
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Convolutional sparsity: regularizer

Recall x ≈
∑K

k=1 Hkzk
Natural corresponding regularizer:

R(x) = min
{zk}

min
{hk}
‖hk‖ = 1

∥∥∥∥∥x −
K∑

k=1
Hkzk

∥∥∥∥∥
2

2

+ λ2
K∑

k=1
‖zk‖0



Adapts FIR filters {hk} and coefficients {zk} to candidate x.

• Literature focuses on the minimization problem (sparse coding)
• Yet to be explored as regularizer for inverse problems
• Inherently shift-invariant representation; no “patches” needed
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Union of subspaces model

x1

x2

x1

x2
 

I Dimensionality reduction?
I cf. classification / clustering motivation [12]
I (Extension to union of “flats” (linear varieties) is possible [13].)
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Union of subspaces regularization

Given (?) collection of K subspace bases D1, . . . , DK
(dictionaries with full column rank):

R(x) = min
k︸︷︷︸

“classification”

min
zk

β
1
2 ‖x −Dkzk‖2

2︸ ︷︷ ︸
regression

= min
k

β
1
2

∥∥∥x −DkD+
k x
∥∥∥2

2

I R(x) = 0 if x lies in the span of any of the dictionaries {Dk}.
I otherwise, distance to nearest subspace (discourage, not constrain)

I Non-convex (highly?) (cf. preceding picture)

I Apply to image patches to be practical
I Equivalent Bayesian interpretation? (not a mixture model here)
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Regularizers using sparse coding with dictionaries

Assume x ≈ Dz where D is a dictionary (often over-complete)
and z is a sparse coefficient vector. Corresponding regularizers:

R(x) = min
z : ‖z‖p≤s

β
1
2 ‖x −Dz‖2

2

R(x) = min
z

(
β1

1
2 ‖x −Dz‖2

2 + β2 ‖z‖p

)
I Convex in z (for given x) if p ≥ 1.
I R(x) typically non-convex in x.
I Could be equivalent to a union-of-subspaces regularizer

if D = [D1 . . . DK ] and
if we constrain coefficient vector z in a non-standard way.

32 / 45



Union-of-subspaces vs sparse-coding-with-dictionary

Consider union-of-subspaces model with D1 =

[
1 0
0 1
0 0

]
, D2 =

[
0
0
1

]
.

So D1 spans x-y plane and D2 spans z-axis.

A dictionary model with D = [D1 D2] =
[

1 0 0
0 1 0
0 0 1

]
and sparsity s = 2, happily represents all three cardinal planes

Thus dictionary model seems “less constrained” than union-of-subspaces model.
(Still, focus on sparse dictionary representation hereafter.)
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Dictionary learning from training data

• Given training data x1, . . . , xN ∈ Rd (image patches)
• Assumed model: xn ≈ Dzn
• unknown d × J dictionary D = [d1 . . . dJ ]
• coefficient vectors z1, . . . , zN ∈ RJ assumed “sparse”

K-SVD dictionary learning formulation [14]:

D∗ = arg min
D∈Rd×J

N∑
n=1

min
zn∈RJ

‖xn −Dzn‖2 s.t. ‖d j‖ = 1 ∀j
‖zn‖0 ≤ s ∀n

= arg min
D∈Rd×J

min
Z∈RJ×N

|||X −DZ |||F s.t. ‖d j‖ = 1 ∀j
‖zn‖0 ≤ s ∀n

X , [x1 . . . xN ], Z , [z1 . . . zN ]
Computationally expensive and no convergence guarantees.
Inherently non-convex due to product of unknowns DZ .
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New dictionary learning method (SOUP-DIL)

Joint work with Sai Ravishankar and Raj Nadakuditi [15]–[18]
• Write sparse representation as Sum of OUter Products (SOUP):

X ≈ DZ = DC ′ =
∑J

j=1 d jc ′j

where Z ′ = C = [c1 . . . cJ ] ∈ RN×J (coefficients for each atom)
• Replace individual atom sparsity constraint ‖zn‖0 ≤ s

with aggregate sparsity regularizer: |||Z |||0 = |||C |||0.
I Natural for DIctionary Learning (DIL) from training data
I Unnatural for image compression using sparse coding

SOUP-DIL `0 formulation:

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j
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SOUP-DIL algorithm

SOUP-DIL formulation:

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j

I Block coordinate descent (BCD) algorithm
• Sparse coding step for C
• Dictionary update step for D

I Very simple update rules (low compute cost)
I Monotone descent of Ψ(D,C)
I Convergence theorem: for any given initialization (D0,C0),

all accumulation points of sequence (D,C)
• are critical points of cost Ψ and
• are equivalent (reach same cost function value Ψ∗).
• Furthermore:

{∥∥∥D(k) −D(k−1)
∥∥∥}→ 0. Same for

{
C (k)

}
.
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SOUP-DIL updates

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j

Alternate: update one column d j of D then one column c j of C .
I Sparse coding step: update c j using residual E j ,

∑
k 6=j dkc ′k

min
c j
|||E j − d jc ′j |||2F + λ2 ‖c j‖0 s.t. ‖c j‖∞ ≤ L

Truncated (via L) hard thresholding of E ′jd j with threshold λ
I Dictionary atom step: update d j

min
d j
|||E j − d jc ′j |||2F s.t. ‖d j‖2 = 1

Constrained least-squares solution: d j = (E jc j)/ ‖E jc j‖2
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Truncated hard thresholding for SOUP-DIL

E ′jd j ∈ RN

c j ∈ RN

λ L

λ

L

(Acts element-wise.) (In practice take L =∞.)
(Algorithm also provides a simple sparse coding method.)
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Example: dictionary learning for Barbara

Barbara K-SVD D SOUP-DIL D

Denoising PSNR (dB) from [15]
σ Noisy O-DCT K-SVD SOUP-DIL
20 22.13 29.95 30.83 30.79
25 20.17 28.68 29.63 29.64
30 18.59 27.62 28.54 28.63

100 8.11 21.87 21.87 21.97
SOUP-DIL faster than K-SVD
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Regularization using SOUP-DIL

I Large image x, extract M patches X = [P1x . . . PMx]
I Assume patch xm = Pmx ≈ Dzm has (aggregate) sparse

representation in dictionary D ∈ Rd×J where d is patch size

R(x) = R(X) = min
C∈RM×J

|||X−DC ′|||2F +λ2|||C |||0 s.t. ‖c j‖∞ ≤ L ∀j

I R(x) = 0 if patches can be represented exactly with
“sufficiently few” non-zero coefficients (depends on λ)

I Ignore constraint ‖c j‖∞ ≤ L
I Bayesian interpretation?
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CT reconstruction using (known) dictionary regularizer

x̂ = arg min
x

1
2 ‖y − Ax‖2

W + βR(x)

= arg min
x

min
C∈RM×J

1
2 ‖y − Ax‖2

W + β

2
(
|||X −DC ′|||2F + λ2|||C |||0

)
Alternating (nested) minimization:
• Fixing x, updating each column of C sequentially

involves (truncated?) hard-thresholding
• Fixing C , updating x is (large-scale) quadratic problem

g(x) = 1
2 |||X −DC ′|||2F =

M∑
m=1

1
2
∥∥Pmx −DPmC ′

∥∥2
2

∇2g(x) =
M∑

m=1
P ′mPm is diagonal

• Work in progress...
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Why Bayesian?

I Numerous “normal-dose” CT images!
I learn D, or most of it, from “big data”
I learn statistics of sparse coefficients Z?
I replace generic ‖Z‖0 with p(Z)?
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Extensions / future work

I Use majorization to update multiple columns of D or C
simultaneously

I DC atom
I Rotate/flip atoms [19] [20]
I rank constraints on dictionary atoms [16]
I Tensor structured atoms for 3D / dynamic imaging
I Combined transform learning / dictionary learning
I Union of manifolds instead of union of subspaces?
I . . .

Open problems
• Model selection
• Parameter selection
• Performance guarantees
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