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I “Real-time frequency-domain blind source separation of convolutive speech
mixtures using non-stationarity in mobile environment”

Neuroscience Research Institute, Incheon, South Korea, 2013.
I “High-resolution PET image reconstruction with sparsity regularization and

structural image”

Samsung Advanced Institute of Technology, Gyeonggi-do, South Korea,
2013.
I “Multi-modal image registration using double mutual information”
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Research Interests

Ph.D. thesis in Purdue ECE (’15):
Advances in medical imaging and image reconstruction

Practical compressed sensing (CS): Theory and application
I I.Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition,” submitted to IEEE Trans. Inf.

Theory, Jan. 2016, [Online] Available: http://arxiv.org/abs/1601.06214.
I I.Y. Chun, B. Adcock, and T. Talavage, “Efficient compressed sensing SENSE pMRI with joint sparsity

promotion,” IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, Jan., 2016.
I I.Y. Chun, B. Adcock, and T. Talavage, “Non-convex compressed sensing CT reconstruction based on

tensor discrete Fourier slice theorem,” in Proc. IEEE EMBC, Chicago, IL, Aug. 2014, pp. 5141–5144.
I I.Y. Chun and T. Talavage, “Efficient compressed sensing statistical x-ray/CT reconstruction from fewer

measurements,” in Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med., Lake Tahoe, CA, Jun.
2013, pp. 30–33.

Adaptive signal processing in computational imaging
I I.Y. Chun, S. Noh, D. Love, T. Talavage, S. Beckley, and S. Kisner “Mean squared error (MSE)-based

excitation pattern design for parallel transmit and receive SENSE MRI image reconstruction,” IEEE Trans.
Comput. Imag. (under review), Jan., 2016.

Statistical image analysis and its application in neuroimaging
I I.Y. Chun, X. Mao, E. Breedlove, L. Leverenz, E. Nauman, and T. Talavage, “DTI detection of

longitudinal WM abnormalities due to accumulated head impacts,” Dev. Neuropsychol., vol. 40, no. 2, pp.
92–97, May, 2015.

Efficient algorithm derivation
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Multiple Sensors in CS
Keywords

Distributed CS

Multiple measurement vector (MMV) model in CS

Joint sparsity: Recovery of multiple signals with a shared support

Best CS results: Exponential improvement in signal recovery failure probability with
number of sensors (in MMV)

Enviromental condition
Communication channel between source signal x and the sensors

Geometric position of the sensors relative to x

Effectiveness of the sensors to x

Geometric features of the scene captured on sensors

Can be widely modeled by structured matrices (e.g. diagonal, circulant, etc)

Can we achieve stronger CS results?
To demonstrate benefits of multi-sensor over single-sensor architecture

The average number of measurements required per sensor

mavg & C−1s × (log factors), mavg = C−1
C∑

c=1

mc ,

decreases linearly in C as C increases, where C is the number of sensors.
6 / 68
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System Model: CS and Parallel Acquisition

System model: Parallel acquisition y1

...
yC


︸ ︷︷ ︸

=: y

=

 A1

...
AC


︸ ︷︷ ︸

=: A

x +

 e1

...
eC


︸ ︷︷ ︸

=: e

I Ac ∈ Cmc×N : measurement matrix in the cth sensor; ec ∈ Cmc : noise; m =
∑

c mc

Recovery model: Quadratically-constrained basis pursuit

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η

I η > 0: ‖e‖2 ≤ η

Identical sampling : Ac ’s are dependent with mc = m/C ; Ac = ÃHc.
I Ã ∈ Cm/C×R : standard CS matrix (rand.); Hc ∈ CR×N : fixed & deterministic

Distinct sampling : Ac ’s are independent; Ac = ÃcHc .
I Ãc ∈ Cmc×Nc ; standard CS matrix (rand.); Hc ∈ CNc×N : fixed & deterministic

Sensor profile matrix Hc : Models environmental conditions; diag(hc ) & circ(hc )
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N



CS and Parallel Acquisition JS CS SENSE pMRI Future Research Appx. Appx.: CS X-Ray CT

Applications

Parallel magnetic resonance imaging (pMRI)1:
Identical Fourier sampling with diag(hc) and C receive coils

y1 = FΩdiag(h1)x

y2 = FΩdiag(h2)x x y4 = FΩdiag(h4)x

y3 = FΩdiag(h3)x

1A worst-case bound (for noiseless case) is derived in I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed
sensing SENSE pMRI reconstruction with joint sparsity promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016.8 / 68
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Applications

Multi-view imaging2:
Distinct Gaussian (or binary) sampling3 with circ(hc) and C cameras

circ(h1)

cam. #1

y1 = GΩ1
circ(h1)x

or y1 = PΩ1
circ(h1)x

x

circ(h2)

cam. #2

y2 = GΩ2
circ(h2)x

or y1 = PΩ2
circ(h2)x

circ(h3)

cam. #3

y3 = GΩ3
circ(h3)x

or y3 = PΩ3
circ(h3)x

2J. Y. Park and M. B. Wakin, “A geometric approach to multi-view compressive imaging”, EURASIP J. Adv. Signal
Process., vol. 2012, no. 1, pp. 1–15, 2012.

3This requires a programable sensing device, e.g. micromirror device.
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Applications

Papoulis’ generalized sampling theorem4: Identical (C -fold downsampled)
Fourier sampling with diag(hc) and C linear functionals

Other applications

I System identification (observability problem): C observation times
I Wireless sensor network: C wireless sensors
I Light-field imaging: C focal lengths

CS benefits? 1) scan time reduction, 2) recovery of higher dimensional or
resolution signal, 3) power consumption reduction, etc.

4A. Papoulis, “Generalized sampling expansion”, IEEE Trans. Circuits Syst., vol. 24, no. 11, pp. 652–654, 1977.
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Example: Multi-View Imaging5

1D distinct random convolution
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Figure: Empirical probability of successful sparse signal recovery in parallel random convolution
sensing using distinct sampling with different number of sensors (s = N/2 and C = 1, . . . , 4):
This suggests that the number of measurements required per sensor can decrease as C increase.

5Y. Traonmilin, S. Ladjal, and A. Almansa, “Robust multi-image processing with optimal sparse regularization”, J. Math.
Imaging Vis., vol. 51, no. 3, pp. 413–429, 2015, M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to
applications”, IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4053–4085, 2011
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RIP vs RIPless

The Restricted Isometry Property (RIP) is NP-hard to verify in
general.

The RIP often leads to a more stringent measurement condition (e.g.
additional log factors).

I Uniform recovery: A single random draw of A guarantees
recovery of all s-spares vectors, with high prob.

Nonuniform recovery: A single random draw of A guarantees recovery
of a fixed s-sparse vector, with high prob.

e.g. RIPless theory by Candès & Plan6

I The small exceptional set of matrices for which recovery fails
may depend on the signal.

I Better estimates both in terms of constants and asymptotic
behavior than uniform recovery

6E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of compressed sensing”, IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7235–7254, 2011.
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Sparsity Models

Definition 1 (Sparsity)

A vector z ∈ CN is s-sparse for some 1 ≤ s ≤ N if ‖z‖0 ≤ s. We write Σs for the set of s-sparse
vectors and, for an arbitrary x ∈ CN , write

σs(x)1 = min {‖x− z‖1 : z ∈ Σs} ,
for the error of the best `1-norm approximation of x by an s-sparse vector.

In practice, vectors are not exactly s-sparse but compressible in the sense that they are
well approximated by sparse ones. This is quantified by σs(x)p , p > 0.

x ∈ CN is compressible if σs(x)1 is small, i.e. x has s significant entries.

Approximately s-spare vector x: We approximate x by its largest s entries.

Beyond sparsity (Sparsity in levels7: new local principle)

Sparsity is only a model based on a global principle.

Sparse and distributed signals and clustered sparse signals7: sophisticated sparsity-in-levels
models to better understand CS-based parallel acquisition system

Note: Claims related to sparsity in levels are omitted in this talk.

7It is formally defined by Definition 3 in Appendix. See details in I. Y. Chun and B. Adcock, “Compressed sensing and
parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016. [Online]. Available: http://arxiv.org/abs/1601.06214.
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Focus Today: A General Framework

Abstract framework (a general framework)
I Subgaussian random matrices, subsampled isometries, random convolutions . . .
I Distinct and identical sampling scenarios in parallel acquisition

Generalization of RIPless theory by Candès & Plan8 (C = 1)

Sparse and distributed model: Based on sparsity in levels model9

Improvement of results (e.g. log factors and error bound)

An approximately sparse vector with support set ∆ can be stably and
robustly recovered from a number of noisy measurements

m & D · Γ(F ,∆) · L.
I D: a particular number dependent on the type of sampling (D = 1 or D = C)
I L: log term
I F : distribution from which the sensing matrix A is drawn
I Γ(F ,∆): local coherence of F relative to ∆

8E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of compressed sensing”, IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7235–7254, 2011.

9B. Adcock, A. C. Hansen, C. Poon, et al., “Breaking the coherence barrier: A new theory for compressed sensing”, ArXiv
pre-print cs.IT/1302.0561, 2013.
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Focus Today: Sampling Scenarios
Distinct sampling (Hc = I)

Ac ∈ Cmc×N ’s are independently drawn from (possibly distinct) distributions
Fc ’s on CN .

Distinct sampling (Hc 6= I)
Ac = ÃcHc

Ãc ∈ Cmc×Nc : standard CS matrix drawn from (possibly different) isotropic
distribution Gc on CN .10

Hc ∈ CNc×N : fixed & deterministic sensor profile matrices

Identical sampling
Ac = ÃHc

Ã ∈ Cm/C×R : standard CS matrix drawn from isotropic distribution G on
CR .11

Hc ∈ CR×N : fixed & deterministic sensor profile matrices

10Gc ’s are isotropic in the sense that E(ãc ã∗c ) = I, ãc ∼ Gc .
11G is isotropic in the sense that E(aa∗) = I, a ∼ G
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Background

RIPless CS12: C = 1 setting in our framework

Construction of sensing matrix A: Drawing m (col.) vectors i.i.d. from F ;

A =
1√
m

m∑
i=1

eia
∗
i .

I F : distribution of vectors in CN

I {ei}mi=1: standard basis of Cm

Isotropic F : E(aa∗) = I, a ∼ F
I Components of a ∼ F have unit variance and are uncorrelated.
I With sufficient measurements, the sensing matrix is well conditioned, i.e.

m−1
∑m

i=1 aia
∗
i ≈ I.

Coherence of F : ‖a‖2
∞ ≤ µ(F ), a ∼ F

I Sensing vectors with low coherence “spread out” information.
I E|an|2 = 1 → µ(F ) ≥ 1

s-sparse vector x (i.e. ‖x‖0 ≤ s) can be recovered from the measurements
y = Ax using roughly m ≈ s · µ(F ) measurements, up to log factors.

12E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of compressed sensing”, IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7235–7254, 2011. 16 / 68
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Abstract Framework: General Setup

F : distribution on the space of N × D complex matrices, for some D ∈ N.

Construction of sensing matrix A: Drawing p matrices i.i.d. from F ;

A =
1
√
p

p∑
i=1

ei ⊗ B∗i =
1
√
p

 B∗1
...

B∗p

 ∈ CpD×N , (1)

I F : distribution of matrices in CN×D

I {ei}pi=1: standard basis of Cp

I ⊗: Kronecker product

Isotropic F :
E(BB∗) = I, B ∼ F (2)

Both the distinct and identical sampling scenarios in parallel acquisition
system can be represented by our general setup (see Appendix).

17 / 68
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From Abstract Framework to Parallel Acq. System

RIPless setup Abstract framework

F CN CN×D

Cond. F is isotropic:
E(aa∗) = I, a ∼ F

F is isoptropic:
E(BB∗) = I, B ∼ F

Distint sampling Identical sampling

D 1 C

p m =
∑C

c=1 mc m/C

Cond. Fc ’s are joint. isotropic:∑C
c=1

mc
m E (aca∗c) = I,

ac ∼ Fc , c = 1, . . . ,C

·

Joint isometry for Hc ’s:
C−1

∑C
c=1 H∗cHc = I

Joint isometry for Hc ’s:∑C
c=1 H∗cHc = I

Table: Extension of isotropic conditions
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Main Theorem

Theorem 2 (Abstract recovery guarantee13)

For N,D, p ∈ N with N ≥ 2 and pD ≤ N let F be a distribution on CN×D satisfying (2) and
suppose that 0 < ε < 1, η ≥ 0 and ∆ ⊆ {1, . . . ,N} with s = |∆| ≥ 2. Let x ∈ CN and draw
A ∈ Cm×N according to (1), where m = pD. Then for any minimizer x̂ of

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η, (3)

where y = Ax + e with ‖e‖2 ≤ η, we have

‖x− x̂‖2 . ‖x− P∆x‖1 +
√
sη, (4)

with probability at least 1− ε, provided14

m & D · Γ(F ,∆) · L,

where
L = log(N/ε) + log(s) log(s/ε). (5)

14The local coherence of F relative to ∆ (Γ(F , ∆)) is formally defined by Definition 4 in Appendix. It allows us to state
our main results without defining a particular signal model, e.g. sparsity or sparsity in levels.
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Main Results: Distinct Sampling

Recovery Guarantee: Dist. sampl. w/ sparsity model15

m & s ·
(

max
c=1,...,C

µ(Fc)

)
· L

I Fc : distribution of Ac ; µ(Fc ): coherence of Fc , for c = 1, . . . ,C

I F1, . . . ,FC are jointly isotropic, i.e.
∑C

c=1
mc
m
E (aca∗c ) = I, ac ∼ Fc .

I L is as in (5).

Provided the sampling distributions are incoherent (µ(Fc) ≈ 1 ∀c) and
jointly isotropic, we obtain an optimal recovery guarantee.

13I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214

15This is given by Corollary 6 in Appendix. See details in I. Y. Chun and B. Adcock, “Compressed sensing and parallel
acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016. [Online]. Available: http://arxiv.org/abs/1601.06214
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Main Results: Distinct Sampling

Recovery Guarantee: Dist. sampl. w/ sparsity model & diag. prof.16

m & s · µG ·
(

max
c=1,...,C

‖Hc‖2
∞

)
· L,

I Ac = ÃcHc , Hc = diag(hc ), for c = 1, . . . ,C

I Gc : isotropic distribution of Ãc ; µ(Gc ): coherence of Gc , for c = 1, . . . ,C

I µG = maxc=1,...,C µ(Gc )

I Hc ’s satisfy the joint isometry condition C−1
∑C

c=1 H∗c Hc = I.

I L is as in (5).

Subject to incoherent sensing, one derives an optimal recovery guarantee
provided ‖Hc‖∞ . 1. Sensor profile design: one requires profiles which do
not grow too large.

16This is given by Corollary 7 in Appendix. See details in I. Y. Chun and B. Adcock, “Compressed sensing and parallel
acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016. [Online]. Available: http://arxiv.org/abs/1601.06214.
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Summary of Results: Identical Sampling

Our results for identical sampling are weaker than those for distinct sampling.

A series of worst-case bounds (i.e. showing no improvement as C increases)
are presented in Chun & Adcock17.
(These bounds are sharp in the sense that they are achieved by certain
choices of the sensor profiles Hc .)

Within the sparse and distributed model, optimal recovery guarantees are
possible by a general construction of sensor profile matrices.
These sensor profile matrices are diagonal and have piecewise constant
blocks (Theorem 4.7 in Chun & Adcock17) .

17I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214.
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Numerical Experiment (Phase Transition) Setup

General setup
I For an s-sparse signal x ∈ C128, s non-zero elements were chosen randomly and

uniformly distributed on the unit circle.
I Phase transition graph of resolution 49× 49

The horizontal and vertical axes are defined by δ = m/CN ∈ (0, 1) and
κ = s/N ∈ (0, 1) respectively.

I The empirical success fraction = #{successes}/20 trials
Success corresponds to a relative recovery error ‖x− x̂‖2/‖x‖2 < 0.001.

I CVX’s SDPT318

Fourier sensing with complex diagonal sensor profile matrices19

I Its identical sampling scenario corresponds to a 1D example of the pMRI system
model with ideal sensor profiles (i.e. satisfying the joint isometry cond.).

I Fourier sensing: m/C rows of the discrete Fourier transform (DFT) matrix were
drawn uniformly at random without replacement
Distinct sampling: these rows were drawn independently across sensors.

I Sensor profile matrix: diagonal elements were generated using a truncated cosine
function multiplied with phase vector {(c − 1)2π/C + 2π/NC , . . . , c2π/C}.

18I. CVX Research, CVX: Matlab software for disciplined convex programming, version 2.0, http://cvxr.com/cvx, 2012,
M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs”, in Recent Advances in Learning and Control,
ser. Lecture Notes in Control and Information Sciences, 2008, pp. 95–110.

19The case of Gaussian sensing w/ circulant sensor profile matrices is omitted in this presentation. See its results in
I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214.
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Numerical Results:
Fourier Sensing w/ Diagonal Profile Matrices
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(a) Empirical phase transition for distinct sampling scenario
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(b) Empirical phase transition for identical sampling scenarios

Figure: Empirical phase transitions for random Fourier sensing with diagonal sensor profile matrices and (C = 2, 3, 4) sensors
(Chun & Adcock). For both sampling scenarios, the empirical probability of successful recovery increases as C increase.
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Numerical Results:
Fourier Sensing w/ Diagonal Profile Matrices

Both the distinct and identical sampling scenarios:
The empirical probability of successful recovery increases as the number of
sensors C increases. The rate of increase is roughly linear in C .

Distinct sampling:
The phase trasition graphs confirm Corollary 7.

Identical sampling:
Interestingly, even though the sensor profile matrices are not piecewise
constant,20 the phase transition curves show a similar increase.
→ Optimal recovery (i.e. linear decrease with C ) is possible for identical
sampling under broader conditions.

20This is given by Theorem 4.7 in I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to
IEEE Trans. Inf. Theory, 2016. [Online]. Available: http://arxiv.org/abs/1601.06214.
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Conclusions

Fundamental theoretical foundations to improve CS-based parallel
acquisition systems in various applications
Practical benefits: Cost, scan time, or power consumption reduction;
resolution enhancement; higher dimensional signal reconstruction.

Our main theoretical results quantify the improvement:
Recovery guarantees: The number of measurements required per sensor
decreases linearly with the total number of sensors.21

Specific case of diagonal or circulant sensor profile matrices in both the
distinct and identical sampling scenarios:21

Our results give sufficient conditions for such optimal guarantees.
Such results are in agreement with the numerical experiments.

21I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214.

26 / 68
N

http://arxiv.org/abs/1601.06214


CS and Parallel Acquisition JS CS SENSE pMRI Future Research Appx. Appx.: CS X-Ray CT

Outline
1 CS and Parallel Acquisition

Introduction
Abstract Framework and Main Theorem
Main Results: Distinct Sampling
Main Results: Identical Sampling
Numerical Experiments
Conclusions

2 JS CS SENSE pMRI
Introduction
Theory & Methods
Results & Discussion
Conclusions

3 Future Research
4 Appx.

CS and Parallel Acquisition
JS CS SENSE pMRI

5 Appx.: CS X-Ray CT
27 / 68

N



CS and Parallel Acquisition JS CS SENSE pMRI Future Research Appx. Appx.: CS X-Ray CT

Introduction
Image Reconstruction in Parallel MRI (pMRI)

Coil-by-coil image recon. (e.g. GRAPPA, SPIRiT, CaLM): Robustness to noise;
inherently restricted to coil geometry, dependence of auto-calibration on sampl. trajectory

Single image recon. (e.g. SENSE, CS SENSE, JSENSE, IRGN, Sparse BLIP):
Optimal in recon. accuracy and imaging flexibility if coil sensitivity estimation is accurate;
unguaranteed global solution in auto-calibration

Third class (e.g. PRUNO, ESPIRiT, proposed JS CS SENSE22): Benefits from both

Calibration-less recon: Further imaging acceleration

Research Objective

Maximization of compressed sensing (CS) performance in pMRI
I CS promoting joint sparsity (JS): Achievement of perfect image recovery with fewer

measurements
I Efficient constrained JS (‖ · ‖2,1) minimization: Split Bregman (SB) & variable

splitting (VS)
I Development of a theoretical foundation for CS-based medical imaging
I Calibration-less reconstruction framework

22I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity
promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016, I. Y. Chun, B. Adcock, and T. Talavage, “Efficient
compressed sensing SENSE parallel MRI reconstruction with joint sparsity promotion and mutual incoherence enhancement”, in

Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 2424–2427.
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Background

Minimization problem for compressed sensing (CS)

argmin
x
‖Ψx‖1 s.t. y = PΩΦx,

I x ∈ CN , y ∈ CN

I PΩ ∈ CN×N : select Ω ⊆ {1, . . . ,N}, |Ω| = m� N uniformly at random
I Φ ∈ CN×N : orthonormal basis {φn}Nn=1, e.g. unitary DFT
I Ψ ∈ CN×N : orthonormal basis {ψn}Nn=1, e.g. wavelet

Perfect recovery of s-sparse solution in basis Ψ
(‖Ψx‖0 := |supp(Ψx)| ≤ s � N) of y = PΩΦx with high probability

Recovery guarantee (sufficient measurement condition)

m ≥ κµ(U)2Ns logN, for some constant κ,

I Mutual coherence (MC) µ(U) = maxi,j |ui,j | ∈ [1/
√
N, 1] & U = ΦΨ−123

23E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of compressed sensing”, IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7235–7254, 2011, B. Adcock and A. C. Hansen, “Generalized sampling and infinite-dimensional compressed
sensing”, Found. Comput. Math., pp. 1–61, 2015.
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System Model: pMRI

Discrete pMRI Model with SENSitivity Encoding (SENSE)24 y1

...
yC


︸ ︷︷ ︸

=: y

=

 PΩΦ
. . .

PΩΦ


︸ ︷︷ ︸

=: FΩ̃

 diag(h1)
...

diag(hC )


︸ ︷︷ ︸

=: H

x +

 n1

...
nC


︸ ︷︷ ︸

=: n

I x ∈ CN , y ∈ CNC , n ∈ CNC , in which nc,Ω ∼ CN (0, σc I) for c = 1, . . . ,C25

I F
Ω̃

= P
Ω̃

(IC ⊗Φ) ∈ CNC×NC ,

in which Φ ∈ CN×N : 2D discrete Fourier transform (DFT),
P

Ω̃
= (IC ⊗ PΩ) ∈ CNC×NC

|Ω̃| = m: m =
∑C

c=1 mc and mc = |Ω| � N

I H ∈ CNC×N ,
in which hc ∈ CN : receive sensitivity for the cth coil for c = 1, . . . ,C ,

diag(·): vector ⇔ diagonal matrix

24K. P. Pruessmann, M. Weiger, M. B. Scheidegger, et al., “Sense: Sensitivity encoding for fast MRI”, Magn. Reson. Med.,
vol. 42, no. 5, pp. 952–962, 1999.

25A. Macovski, “Noise in MRI”, Magn. Reson. Med., vol. 36, no. 3, pp. 494–497, 1996.
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Coil-by-Coil Image Reconstruction

x1

x2 x x4

x3

x̃? = SoS(

 x?1
...

x?4

)

→ Intensity
Inhomogeneity!
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Coil-by-Coil Image Reconstruction

Minimization Problem (Coil-by-coil CS pMRI recon.26)

Considering separability of opt. prob., an appl. of CS is straightforward:

argmin
xC

Sparsity of mult. coil imgs︷ ︸︸ ︷
‖ΨCxC‖1 s.t. ‖y − F

Ω̃
xC‖2

2︸ ︷︷ ︸
Data fidelity w/o SENSE

< δ.

I xC = [x∗1 | · · · |x∗C ]∗ ∈ CNC ,

in which xc ∈ CN : unknown image for cth coil for c = 1, . . . ,C
I ΨC = IC ⊗Ψ ∈ CNC×NC ,

in which Ψ ∈ CN×N : discrete Daubechies transform (DDT)

Problem: 1) Intensity inhomogeneity and 2) phase information removal
from sum-of-square (SoS) combination

I SoS process for recon. of x̃: x̃n =
√∑C

c=1 |xc,n|2 for n = 1, . . . ,N

26A. Majumdar and R. K. Ward, “Calibration-less multi-coil MR image reconstruction”, Magn. Reson. Imaging, vol. 30, no.
7, pp. 1032–1045, 2012, M. Murphy, M. Alley, J. Demmel, et al., “Fast l1-SPIRiT compressed sensing parallel imaging MRI:
Scalable parallel implementation and clinically feasible runtime”, IEEE Trans. Med. Imag., vol. 31, no. 6, pp. 1250–1262, 2012
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Coil-by-Coil CS pMRI Reconstruction

Recovery Guarantee (Coil-by-coil CS recon.)

m & η
∑
c

sc logN
Simul.−−−→
Acq.

m & ηC
(

max sc
)

log(N)

I sc = ‖Ψxc‖0 for c = 1, . . . ,C

Linear in C and maxc sc

Asymptotic MC27

Remark (Asymptotic MC)

µ(ΦΨ∗)2 = O (1) in practice

Replacement of it with asymptotic MC using nonuniform sampl. → µ(ΦΨ∗) ≈
√
η/N 27

Radial line sampling: Sufficiently close to the optimal nonuniform sampl. (see Appendix)28

27B. Adcock, A. C. Hansen, C. Poon, et al., “Breaking the coherence barrier: A new theory for compressed sensing”, ArXiv
pre-print cs.IT/1302.0561, 2013

28I. Y. Chun, B. Adcock, and T. Talavage, “Efficient compressed sensing SENSE parallel MRI reconstruction with joint

sparsity promotion and mutual incoherence enhancement”, in Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 2424–2427
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Single Image Reconstruction based on SENSE

x1 = diag(h1)x

x2 = diag(h2)x x x4 = diag(h4)x

x3 = diag(h3)x
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CS SENSE pMRI Reconstruction

Problem (CS SENSE pMRI recon.29)

Conventional CS SENSE pMRI reconstruction model:

argmin
x

Sparsity of single img︷ ︸︸ ︷
‖Ψx‖1 s.t. ‖y − F

Ω̃
Hx‖2

2︸ ︷︷ ︸
SENSE-based data fidelity

< δ.

I x ∈ CN : unknown target image

SENSE-based single image recon.:
Optimal and most flexible (in particular for coil geometry)!

Performance bottleneck: Estimation accuracy of H

29I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity
promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016, H. She, R. R. Chen, D. Liang, et al., “Sparse BLIP:
BLind Iterative Parallel imaging reconstruction using compressed sensing”, Magn. Reson. Med., vol. 71, no. 2, pp. 645–660,
2014
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Recovery Guarantee (CS SENSE recon.30)

m & ηCs logN

I s = ‖Ψx‖0

Linear in C and s

Simplifying assumptions

I Ψ = I: Avoidance of MC barrier (i.e. high MC b/w Fourier and wavelet systems)31

I
∑

c |diag(hc )|2 = I: Prevention of the inhomogeneity problem
(i.e. location-dependent bias problem in the resultant SoS-combined image)32

W/o the assumptions, slightly worse recovery guarantee in practice

30This is given by Theorem 8 in Appendix. See details in I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed
sensing SENSE pMRI reconstruction with joint sparsity promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016.

31B. Adcock, A. C. Hansen, C. Poon, et al., “Breaking the coherence barrier: A new theory for compressed sensing”, ArXiv
pre-print cs.IT/1302.0561, 2013

32E. G. Larsson, D. Erdogmus, R. Yan, et al., “SNR-optimality of sum-of-squares reconstruction for phased-array magnetic
resonance imaging”, J. Magn. Reson., vol. 163, no. 1, pp. 121–123, 2003
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JS CS SENSE pMRI Reconstruction

coil#1

coil#1

coil#2

coil#2
Obj. coil#4

coil#4

coil#3

coil#3Figure: Sparsity across channels: shared sparsity pattern
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JS CS SENSE pMRI Reconstruction

Problem (JS CS SENSE recon.33)

Fully exploiting the relationship b/w the imgs in each coil, i.e. their shared
sparsity patterns, the proposed joint sparsity (JS) CS SENSE is given by:

argmin
x

JS of synthesized mult. coil imgs︷ ︸︸ ︷
‖ΨCHx‖2,1 s.t. ‖y − F

Ω̃
Hx‖2

2︸ ︷︷ ︸
SENSE-based data fidelity

< δ. (6)

I JS (‖ · ‖2,1): ‖ψ‖2,1 =
∑N

n=1

√∑C
c=1 |ψnc |2 (convex-functional)34

SENSE-based single image recon.: Avoidance of inhomogeneity artifacts

Assumptions:
⋂

c supp(hc) 6= ∅ on ∆ & smooth spatial profiles hc ’s

33I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity
promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016, I. Y. Chun, B. Adcock, and T. Talavage, “Efficient
compressed sensing SENSE parallel MRI reconstruction with joint sparsity promotion and mutual incoherence enhancement”, in

Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 2424–2427
34P. Boufounos, G. Kutyniok, and H. Rauhut, “Sparse recovery from combined fusion frame measurements”, IEEE Trans. Inf.

Theory, vol. 57, no. 6, pp. 3864–3876, 2011
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JS CS SENSE pMRI Reconstruction

“Worst case” recovery guarantee (JS CS SENSE recon.35)

m & η

c∑
c=1

sc logN
Simul.−−−→
Acq.

m & ηC

(
max

c=1,...,C
sc

)
log(N)

The analysis is based on the relaxed minimization of JS CS SENSE, i.e. coil-by-coil recon.

Note (Performance expectation)

Dependence on size of support of sensitivities

Dependence on imaging resolution
Low resolution: sc ≈ s/C
High resolution: sc ≈ s

JS CS SENSE vs CS SENSE:
∑

c sc (or maxc sc) vs sC ;
Greater difference in low-resolution imaging (see Appendix)

35I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity
promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016
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Simulation Setup I

Tested image: GLPU-phantom with size of 256× 256 & 1024× 102436;
T1-weighted brain image with size of 512× 512 (non-piecewise constant)

The rectangular field-of-view (FOV) of size 25.6× 25.6 cm

Sensitivity map simulation (Biot-Savart law): C = 2, C = 4; a coil radius of 6 cm; a
distance from the coil centers to the center of the rectangular FOV of 15 cm

Sampling information for different images:

256× 256 Phantom 1024× 1024 Phantom 512× 512 Human Brain
Radial line (# of lines) Radial line (# of lines) Radial line (# of lines)

36 48 62 47 70 95 47 59 71
≈ 15.0 % ≈ 20.0 % ≈ 25.0 % ≈ 5.0 % ≈ 7.5 % ≈ 10.0 % ≈ 10.0 % ≈ 12.5 % ≈ 15.0 %

Realization of complex Gaussian noise: relatively low noise (35 dB SNR) for phantom &
low noise (40 dB SNR) for neuroimage (SNR: signal-to-noise ratio)

Recon. parameters: SB suggestions37; 4-level DDT of filter size 4 (DDT-4);
nInner × nOuter iteration is 1×10000 for GLPU phantom & 1×12500 for real
T1-weighted image

Recon. accuracy evaluation: SERdB(k) = 20 log10(‖xtrue‖2

/
‖xtrue − x(k)‖2)

36M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, et al., “Realistic analytical phantoms for parallel Magnetic Resonance
Imaging”, IEEE Trans. Med. Imag., vol. 31, no. 3, pp. 626–636, 2012.

37T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems”, SIAM J. Imaging Sci., vol. 2, no. 2,
pp. 323–343, 2009.
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Results: JS CS SENSE vs CS SENSE Recon.
(a) Coil-by-coil CSW (b) CSW SENSE (c) JS CSW SENSE (d) JS CSW+TV SENSE
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Figure: Comparison of reconstructed images from different CS pMRI reconstruction models and images (noisy measurements,
convex models, and C = 4): SER gaps between (b) and (c) are [3.1, 7.2] dB for the 256×256 GLPU phantom, [1.5, 4.7] dB
for the 1024×1024 GLPU phantom, and [3.5, 6.2] dB for the 512×512 neuroimage.
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Conclusions

An Advantage of JS CS SENSE over CS SENSE
More accurate reconstruction (e.g. up to 6.2 dB in SER for 512×512 neuroimage)

@ Higher resolution imaging, less significant improvement in the recovery guarantee for JS
CS SENSE over CS SENSE: e.g.

∑
c sc/Cs is 0.57 for 256×256 and 0.93 for 1024×1024.

Advantages of Calibration-Less (CaL) JS CS SENSE over
State-of-the-Art Methods

More accurate reconstruction for complex and small-sized anatomical structures (e.g. up
to 6.6 dB in SER for non-piecewise constant neuroimage)

Not restricted to coil geometry

W/o having more serious inhomogeneity artifacts caused by smaller diameter receive coils,
it can achieve a better CS recovery guarantee (decreasing the value of sc ’s).

Recovery Guarantee and Coil Geometry Design
Suggestions38

I Smaller diameter coils to reduce sc for c = 1, . . . , C
I An increase of the inter-element gap between coils
I A larger number of coils while avoiding redundancy

38P. B. Roemer, W. A. Edelstein, C. E. Hayes, et al., “The NMR phased array”, Magn. Reson. Med., vol. 16, no. 2,
pp. 192–225, 1990, J. A. de Zwart, P. J. Ledden, P. Kellman, et al., “Design of a SENSE-optimized high-sensitivity MRI receive
coil for brain imaging”, Magn. Reson. Med., vol. 47, no. 6, pp. 1218–1227, 2002.
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Future Research

Theoretical CS (collab: Prof. Adcock)

Probabilistic sensor profile models in CS parallel acquisition system

Practical CS using prior information

Non-uniform FFT in CS

CS in Computational Imaing
Combination with machine learning (ML)

CS-based encoding in parallel transmit & receive SENSE MRI1

CS-based encoding in X-ray CT2

Image Analysis in Neuroimaging
Randomized paired difference analysis with complete & incomplete pairs3 (collab: S. Bari)

ML for brain injury detection (collab: J. Jin, I. Jang, Dr. K. Han, and Dr. M. Kwon)

1K. Pawar, G. Egan, and J. Zhang, “Multichannel compressive sensing MRI using noiselet encoding”, PLoS ONE, vol. 10,
no. 5, e0126386, 2015.

2W. Hou and C. Zhang, “Analysis of compressed sensing based CT reconstruction with low radiation”, in Proc. 2014 Intell.
Signal Process. Commun. Syst., Sarawak, Malaysia, 2014, pp. 291–296.

3S. Bari, I. Y. Chun, L. J. Leverenz, et al., “DTI detection of WM abnormalities using randomization test with complete and
incomplete pairs”, in Proc. 21st Org. for Hum. Brain Mapp., Honolulu, HI, 2015.
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Q & A

Thank you for your attention.

Continue?
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Framework: Distinct Sampling
Recall:

I D = 1 and p = m =
∑C

c=1 mc
I A: Ac ∈ Cmc×N drawn from possibly distinct distributions

F1, . . . ,FC are jointly isotropic:
C∑

c=1

mc

m
E (aca∗c ) = I, ac ∼ Fc , c = 1, . . . ,C . (7)

I Fc : distribution on CN for c = 1, . . . ,C

Define the new distribution F on CN :
Conditioned on the event {X = c}, F = Fc .

I P(X = c) = mc/m for c = 1, . . . ,C
I If a ∈ CN denotes an arbitrary row of A, then a arises from the distribution Fc with

probability mc/m.

A =
1√
m

 A1

...
AC

 ∈ Cm×N

I Ac ∈ Cqc×N : contains the rows of A drawn from Fc
I qc : the number of such rows drawn from Fc ; E(qc ) = mc
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Framework: Distinct Sampling

Sensor profile matrices Hc 6= I

Ac = ÃcHc

I Ãc ∈ Cm/C×N : CS matrix drawn from (possibly different) isotropic distribution Gc

on CN

I Hc ∈ CN×N : sensor profile matrices (e.g. diag(hc ) and circ(hc ))
I ac ∼ Fc if ac = H∗c ãc for ãc ∼ Gc .

Joint isometry condition from (7):

1

C

C∑
c=1

H∗cHc = I

Incoherent Gc ’s:
µG = max

c=1,...,C
µ(Gc)
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Framework: Identical Sampling

Recall:

I D = C and p = m/C
I A: Ac = ÃHc , Ã ∈ Cm/C×R : random; Hc ∈ CR×N : fixed & deterministic

Ã =
1

p

p∑
i=1

eia
∗
i

I ai ∼ G , where G is isotropic on CR

Define the distribution F on the space of R × C complex matrices:

B = [H∗1a| · · · |H∗Ca] ∼ F

I a ∼ G

Joint isometry condition: Isotropic F in the sense of (2)

C∑
c=1

H∗cHc = I
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Sparsity Models: Sparsity in Levels

Definition 3 (Sparsity in levels1)

Let I = {I1, . . . , IC} be a partition of {1, . . . ,N} and S = (s1, . . . , sC ) ∈ NC where sc ≤ |Ic | for
c = 1, . . . ,C . We say that z ∈ CN is (S, I)-sparse in levels if∣∣{j : zj 6= 0

}
∩ Ic

∣∣ ≤ sc , c = 1, . . . ,C .

We denote the set of such vectors as ΣS,I and, for an arbitrary x ∈ CN , write

σS,I(x)1 = min
{
‖x− z‖1 : z ∈ ΣS,I

}
,

for the error of the best `1-norm approximation of x by an (S, I)-sparse vector.

Approximation in ΣS,I means approximation by the largest sc absolute entires of x
restricted to Ic for c = 1, . . . ,C .

1I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214, B. Adcock, A. C. Hansen, C. Poon, et al., “Breaking the coherence
barrier: A new theory for compressed sensing”, ArXiv pre-print cs.IT/1302.0561, 2013
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Refined Coherence

Definition 4 (Coherence relative to ∆)

Let F be a distribution on the space of N × D complex matrices and ∆ ⊆ {1, . . . ,N}. We
define the local coherence of F relative to ∆ as

Γ(F ,∆) = max {Γ1(F ,∆), Γ2(F ,∆)} ,

where Γ1(F ,∆) and Γ2(F ,∆) are the smallest quantities such that

‖BB∗P∆‖∞ ≤ Γ1(F ,∆), B ∼ F ,

and
sup
z∈CN

‖z‖∞=1

max
i=1,...,N

E|e∗i BB∗P∆z|2 ≤ Γ2(F ,∆), B ∼ F ,

almost surely. Note that Γi (F ,∆) ≥ 1, i = 1, 2, due to the isotropic assumption on F .

Note: The definition of local coherence in levels is omitted in this talk.

1F is isotropic in the sense that E(BB∗) = I, B ∼ F .
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Ideas behind the proof of Theorem 2
1 Lemma 5: Recovery is guaranteed by the existence of a so-called dual certificate (ρ)

2 Golfing scheme of Gross2: Find a suitable dual certificate

Lemma 5

Let A ∈ Cm×N , where m ≤ N, and ∆ ⊆ {1, . . . ,N}. Suppose that

(i) : ‖P∆A∗AP∆ − P∆‖2 ≤ α, (ii) : max
i /∈∆
{‖P∆A∗Aei‖2} ≤ β,

and that there exists a vector ρ = A∗ξ ∈ CN for some ξ ∈ Cm such that

(iii) : ‖P∆ρ− sign(P∆x)‖2 ≤ γ, (iv) : ‖P⊥∆ρ‖∞ ≤ θ, (v) : ‖ξ‖ ≤ σ
√
|∆|,

for constants 0 ≤ α < 1 and β, γ, θ, σ ≥ 0 satisfying θ + βγ/(1− α) < 1. For a vector x ∈ CN ,
sign(x) ∈ CN denotes its complex sign. Let x ∈ CN , y = Ax + e with ‖e‖2 ≤ η and suppose
that x̂ is a minimizer of the problem

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η.

Then the estimate
‖x̂− x‖2 ≤ C1‖x− P∆x‖1 + C2

(
1 + σ

√
|∆|
)
η,

holds for constants C1 and C2 depending on α, β, γ and θ only.

2D. Gross, “Recovering low-rank matrices from few coefficients in any basis”, IEEE Trans. Inform. Theory, vol. 57, no. 3,
pp. 1548–1566, 2011. 53 / 68
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Main Results: Distinct Sampling

Corollary 6 (Distinct sampl. with sparsity model3)

Consider the distribution F defined in slide 48 and suppose that x ∈ CN , 0 < ε < 1 and
N ≥ s ≥ 2. Draw A ∈ Cm×N according to (1) and let y = Ax + e with ‖e‖2 ≤ η. Then for any
minimizer x̂ of

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η,

we have
‖x− x̂‖2 . σs(x)1 +

√
sη,

with probability at least 1− ε, provided

m & s ·
(

max
c=1,...,C

µ(Fc )

)
· L,

where µ is a standard coherence, F1, . . . ,FC are as in slide 48 and L is as in (5).

3I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214
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Main Results: Distinct Sampling

Corollary 7 (Distinct sampl. with sparsity model and diag. profiles4)

Let x ∈ CN , 0 < ε < 1, N ≥ s ≥ 2 and suppose that Hc ∈ CN×N , c = 1, . . . ,C , are diagonal
matrices satisfying the joint isometry condition, i.e. C−1

∑C
c=1 H∗c Hc = I. Let G1, . . . ,GC be

isotropic distributions on CN and for c = 1, . . . ,C define Fc so that ac ∼ Fc if ac = H∗c ãc for
ãc ∼ Gc . Let F be as in slide 48 for this choice of F1, . . . ,FC and set m1 = . . . = mC = m/C .
Draw A according to (1) and let y = Ax + e with ‖e‖2 ≤ η. Then for any minimizer x̂ of

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η,

we have
‖x− x̂‖2 . σs(x)1 +

√
sη,

with probability at least 1− ε, provided

m & s · µG ·
(

max
c=1,...,C

‖Hc‖2
∞

)
· L,

where µG = maxc=1,...,C µ(Gc ) and L is as in (5).

4I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214
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Diagonal Sensor Profile Matrix

C = 2 C = 3 C = 4
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Figure: Magnitudes of diagonal sensor profiles (C = 2, 3, 4)5

5I. Y. Chun and B. Adcock, “Compressed sensing and parallel acquisition”, Submitted to IEEE Trans. Inf. Theory, 2016.
[Online]. Available: http://arxiv.org/abs/1601.06214.
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CS SENSE pMRI Reconstruction

Theorem 8 (Nonuniform recovery in CS SENSE6)

Assume that U = [(Φdiag(h1)Ψ)∗| · · · |(Φdiag(hC )Ψ)∗]∗ where Ψ = I,
and

∑
c |diag(hc)|2 = I. Let ∆ ⊆ {1, . . . ,N}, |∆| = s be given. For

0 < ε < 1, if
m & ηρ−2Cs log (ε−1) log(N),

then, for ρ ∈ (0, 1), the normalized matrix Ã∆ = (1
√
m)P

Ω̃
U satisfies

‖Ã∗∆Ã∆ − I‖2→2 ≤ ρ

with probability at least 1− ε, where ‖A‖2→2 := max‖x‖2=1 ‖Ax‖2.†

Note that the condition on ‖Ã∗∆Ã∆ − I‖2→2 is necessary, but not sufficient, to ensure a
stable and robust CS signal recovery.

6I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity
promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016
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Efficient ‖ · ‖2,1-Norm Minimization by SB and VS10

By simplified Bregman iteration, (6) can be reduced to a sequence of unconstrained problems:

x(k+1) = argmin
x(k)

‖ΨCHx(k)‖2,1 + (α/2)‖y(k) − F
Ω̃

Hx(k)‖2
2; y(k+1) = y(k) + y − F

Ω̃
Hx(k+1)7.

By variable splitting (VS8, d
(k)
H = Hx(k), separating an effect of H on d

(k)
Ψ = ΨCHx(k)) and split

Bregman (SB9, d
(k)
Ψ = ΨCd

(k)
H ) method,

(x(k+1), d
(k+1)
H , d

(k+1)
Ψ ) = argmin

x(k),d
(k)
H ,d

(k)
Ψ

‖d(k)
Ψ ‖2,1 + (α/2)‖y(k) − F

Ω̃
d

(k)
H ‖

2
2+

(ν/2)‖d(k)
H −Hx(k) − b

(k)
H ‖

2
2 + (β/2)‖d(k)

Ψ −ΨCd
(k)
H − b

(k)
Ψ ‖

2
2;

b
(k+1)
H = b

(k)
H + Hx(k+1) − d

(k+1)
H ; b

(k+1)
Ψ = b

(k)
Ψ + ΨCd

(k+1)
H − d

(k+1)
Ψ .

Decomposed l1 and l2 components → Efficient solution!

7“Adding back the noise”: Regularization parameter plays important role only in convergence rate, but does not affect on
the solution by varying observation.

8S. Ramani and J. A. Fessler, “A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction”,
IEEE Trans. Med. Imag., vol. 31, no. 3, pp. 677–688, 2012.

9T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems”, SIAM J. Imaging Sci., vol. 2, no. 2,
pp. 323–343, 2009.

10I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity
promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016.
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CaL JS CS SENSE pMRI Reconstruction
Basic Framework of Sensitivity Estimation w/o Calib. Scanning

1 Simultaneous acquisition of k-space data for multiple surface-coils and single body-coil

2 Reconstruction of multiple surface-coil images (xC
?) and a single body-coil image (x?0 )

3 Sensitivity estimation using xC
? and x?0

Residual-JS Regularized Sensitivity Estimation11

argmin
r

∥∥∥ΨC

(
x?C−

dg(x?0)R
. . .

dg(x?0)R


︸ ︷︷ ︸

=: X

 r1
...

rC


︸ ︷︷ ︸

=: r

)∥∥∥
2,1

s.t. ‖x?C−Xr‖2
2 < δ

I r ∈ CPC , in which rc ∈ CP : the cth coil coefficient vector; X ∈ CNC×PC

I R ∈ CN×P : mapping matrix of the coeff. (of complex sinusoid basis functions12) to data

Calibration-Less (CaL) JS CS SENSE
11I. Y. Chun, B. Adcock, and T. M. Talavage, “Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity

promotion”, IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 354–368, 2016.
12M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, et al., “Realistic analytical phantoms for parallel Magnetic Resonance

Imaging”, IEEE Trans. Med. Imag., vol. 31, no. 3, pp. 626–636, 2012.
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Simulation Setup II

Tested image: T1-weighted brain image with size of 512× 512

Sensitivity map simulation with a larger-sized coil setup (for state-of-the-art methods):
C = 4; a coil radius of 9 cm; a distance from the coil centers to the center of the
rectangular FOV of 18 cm
→ avoidance of serious inhomogeneity artifacts in the SoS-combined image

Body-coil k-space data: sampled along the same radial trajectories; strong noise
(20 dB SNR) for realization of complex Gaussian noise

CaL SENSE-based CS reconstruction
I Body-coil image (x?0 ) recon. parameters: 4-level Symlet with 4 vanishing moments, total variation (TV);

5×100 iterations
I xC

? by coil-by-coil recon: DDT-4, TV (CaLMW+TV )
I Residual-JS regularized sensitivity est.: DDT-4, supp(SoS(x?C))-based estimation

Coil-setup I Coil-setup II of larger coils

Figure: An example of SoS of sensitivity profiles (C = 4)
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CaL JS CS SENSE vs State-of-the-Art Methods
Reference (b) CaL CSW SENSE

(d) CaL JS
CSW SENSE

(d) CaL JS
CSW+TV SENSE

(calibration-less) (calibration-less) (calibration-less)

5
1

2
×

5
1

2
H

u
m

a
n

B
ra

in
w

it
h
≈

1
5
.0

%

SERdB = 20.36 SERdB = 24.60 SERdB = 25.16

l1-SPIRiTW SAKE + l1-ESPIRiTW IRGN-TV CaLMW+TV
(auto-calibrating) (calibration-less) (calibration-less) (calibration-less)

SERdB = 4.92 (23.28) SERdB = 4.90 (23.07) SERdB = 4.85 (21.27) SERdB = 4.64 (18.57)

Figure: Comparison of 512×512 reconstructed images from different auto-calibrating or calibration-less pMRI reconstruction
models (≈ 15.0% noisy measurements and C = 4): (b), (c), and (d) are calibration-less reconstruction based on the residual-JS
regularized sensitivity estimation. CaL JS CS SENSE outperforms other state-of-the-art calibration-less reconstruction methods
for the non-piecewise constant image: the SER gap is in the interval [1.9, 6.6] dB.14

14The SERdB in parenthesis is defined by SERdB(k) = 20 log10(‖SoS(xtrueC )‖2
/
‖SoS(xtrueC )− SoS(x

(k)
C )‖2).
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Nonuniform Density Random Sampling

Nonuniform density random sampling is necessary to overcome the MC barrier in CS: e.g.
multi-level random sampling15

Nonuniform under-sampling along the phase-encoding direction: Worse recovery
guarantee than multi-level scheme16

Radial line sampling: Sufficiently close to the optimal multi-level sampling, i.e. . 1.5 dB
in signal-to-error ratio (SER) for GLPU phantom image reconstruction17

Radial line Multi-level

Figure: Sampling schemes (sampling ratio ≈ 10 %)

15B. Adcock, A. C. Hansen, C. Poon, et al., “Breaking the coherence barrier: A new theory for compressed sensing”, ArXiv
pre-print cs.IT/1302.0561, 2013.

16J. Bigot, C. Boyer, and P. Weiss, “An analysis of block sampling strategies in compressed sensing”, ArXiv preprint
cs.IT:1305.4446, 2013.

17I. Y. Chun, B. Adcock, and T. Talavage, “Efficient compressed sensing SENSE parallel MRI reconstruction with joint

sparsity promotion and mutual incoherence enhancement”, in Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 2424–2427.
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Summary of Recovery Guarantee

(a) case: m & ηs log(N) for all three models

(b) case: Recovery guarantee for JS CS SENSE is better than CS SENSE
and similar to the coil-by-coil CS model.
However, due to error propagation lemma, reconstruction error of JS CS
SENSE is expected to be smaller than (SoS-based) coil-by-coil CS.

JS CS SENSE vs CS SENSE:
∑

c sc (or maxc sc) vs sC ;
Greater difference in low-resolution imaging
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Figure: An example of shape of coil sensitivity profiles in 1D (C = 3): (a) perfect partitioning
and (b) realistic case
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Background

Minimization problem for non-convex CS

argmin
x
‖Ψx‖pp, s.t. y = PΩΦx,

with lp(p ∈ (0, 1))-quasi-norm, defined by ‖x‖pp =
∑N

n=1 |xn|p .

Perfect recovery of s-sparse solution of y = PΩΦx with high probability,
if Φ has i.i.d. Gaussian entries and Ψ = I18

Recovery guarantee

M ≥ C1(p)s + pC2(p)s log(N/s),

where the constants C1(p) and C2(p) decrease as p → 0.

NP-harp problem
Local minimum, if Ψx decays quickly and m is sufficiently large19.

18R. Chartrand and V. Staneva, “Restricted isometry properties and nonconvex compressive sensing”, Inverse Probl., vol. 24,
no. 3, p. 035 020, 2008, Y. Shen and S. Li, “Restricted p-isometry property and its application for nonconvex compressive
sensing”, Adv. Comput. Math., vol. 37, no. 3, pp. 441–452, 2012.

19D. Ge, X. Jiang, and Y. Ye, “A note on complexity of Lp minimization”, Math. Program., vol. 129, no. 2, pp. 285–299,
2011.
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T-DFST & Non-Convex CS

Tensor Discrete Fourier Slice Theorem (T-DFST)20

Exact mapping of 1D discrete Fourier transform (DFT) of discrete Radon
transform (DRT) data on a Cartesian 2D DFT grid
: Avoidance of interpolation errors

Relates CS theory with line-based projection sampling system.

Non-Convex CS

Uniform random sampling of projection angles + T-DFST
= nonuniform random Fourier measurement on the 2D Cartesian grid

Reduction of sufficient number of measurements by enhancing sparsity

Solved by efficient constrained reweighted l1-norm minimization based on
split Bregman (SB) and majorization-minimization (MM)

20I. Y. Chun, B. Adcock, and T. Talavage, “Non-convex compressed sensing CT reconstruction based on tensor discrete

fourier slice theorem”, in Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 5141–5144.
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T-DFST- & CS-based Reconstructed Images
IFFT2 Convex CS Non-convex CS
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Figure: Comparison of reconstructed 257× 257 NCAT phantom images from different CT reconstruction methods and
anglesI. Y. Chun, B. Adcock, and T. Talavage, “Non-convex compressed sensing CT reconstruction based on tensor discrete

fourier slice theorem”, in Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 5141–5144 67 / 68
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Optimality and Practical Applicability of T-DFST

Optimality of nonuniform random sampling of Fourier samples based
on T-DFST, by uniformly random sampling projection angles

Only suboptimal: Periodicity assumption and modulation operator lead to run against

a mutual coherence (MC) barrier.

Figure: Partial 2D DFT by uniform sampling of 17 angles at random for N = 25721

Practical applicability of T-DFST

Difficulty to implement nonuniform ray spacing with different angles in DRT

How close is DRT-based proj. model to a line-based continuous Radon transform model?

21I. Y. Chun, B. Adcock, and T. Talavage, “Non-convex compressed sensing CT reconstruction based on tensor discrete

fourier slice theorem”, in Proc. 36th IEEE EMBS, Chicago, IL, 2014, pp. 5141–5144.
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