# SIMULATED ANNEALING WITH AN EFFICIENT UNIVERSAL BARRIER

## FASTER CONVEX OPTIMIZATION

JACOB ABERNETHY — UNIVERSITY OF MICHIGAN (JOINT WORK WITH ELAD HAZAN — PRINCETON)

#### THIS TALK — OUTLINE

- 1. The goal of Convex Optimization
- 2. Interior Point Methods and Path following
- 3. Hit-and-Run and Simulated Annealing
- 4. The Annealing-IPM Connection
- 5. Faster Optimization

#### **GENERAL CONVEX OPTIMIZATION PROBLEM**

Let K be a bounded convex set, we want to solve

$$\min_{x \in K} \theta^\top x$$

Can always convert non-linear objective into a linear one

$$\min_{x \in K} f(x) \longrightarrow \min_{\substack{(x,c) \in K \times \mathbb{R} \\ f(x) \le c}} c$$

### THE GRADIENT DESCENT ALGORITHM

The gradient descent algorithm:

For 
$$t = 1, 2, \ldots$$
:  
 $\tilde{x}_t = x_{t-1} - \eta \nabla f(x_{t-1})$   
 $x_t = \operatorname{Proj}_K(\tilde{x}_t)$ 

Challenge: the Projection step can often be just as hard as the original optimization

#### **GRADIENT DESCENT NOT IDEAL WITH LOTS OF CURVATURE**



The gradient descent algorithm doesn't use any knowledge of the curvature of objective function

#### **USE THE CURVATURE: NEWTON'S METHOD**

Newton's Method is a "smarter" version of gradient descent, moves along the gradient after a transformation



FC

#### NEWTON'S METHOD VERSUS GRADIENT DESCENT

For a quadratic
 function, one only
 needs a single
 newton step to
 reach the global
 minimum

r 
$$t = 1, 2, \dots$$
:  
 $\tilde{x}_t = x_{t-1} - \nabla^{-2} f(x_{t-1}) \nabla f(x_{t-1})$   
 $x_t = \operatorname{Proj}_K(\tilde{x}_t)$ 



#### WAIT! OUR ORIGINAL OBJECTIVE ISN'T CURVED...

How does this help us with linear optimization?

$$\min_{x \in K} \theta^\top x + \phi(x)$$

- Add a curved function  $\phi$ () to the objective!
- $\diamond$   $\phi$ () should be "super-smooth" (more on this later)
- φ() should be a "barrier", i.e. goes to ∞ on the boundary,
   but not too quickly!

#### **OPTIMIZATION WITHOUT A BARRIER**



 $\min \theta^\top x$ 

 $x \in K$ 

#### **OPTIMIZATION WITH A BARRIER**





#### WHAT IS A GOOD BARRIER?

- What is needed for this "barrier func."  $\phi$ ()?
- ► Canonical example: if set is a polytope  $K = \{x : Ax \le b\}$  then the *logarithmic barrier* suffices:  $\phi(x) = -\sum_i \log(b_i - A_ix)$
- In general, Nesterov and Nemirovski proved that the following two conditions are sufficient. Any function satisfying these conditions is a *self-concordant barrier*:

$$abla^3 \phi[h, h, h] \leq 2(
abla^2 \phi[h, h])^{3/2}, \text{ and}$$
  
 $abla \phi[h] \leq \sqrt{\nu \nabla^2 \phi[h, h]},$ 

v is the barrier parameter which will be important later

#### ALGORITHM: INTERIOR POINT PATH FOLLOWING METHOD

- Nesterov and Nemirovski developed the sequential "path following" method, described as follows:
- Let  $\alpha = (1 + 1/\sqrt{\nu})$  the "inflation" rate
- For t=1,2,...

- 1. Update temperature:  $f_k(x) := \alpha^k(\theta^\top x) + \phi(x)$
- 2. Newton update:  $\hat{x} \leftarrow \hat{x} \frac{1}{1+c_k} \nabla^{-2} f_k(\hat{x}) \nabla f_k(\hat{x})$

#### WHAT DOES THE SEQUENCE OF OBJECTIVES LOOK LIKE?

$$f_k(x) := \alpha^k(\theta^\top x) + \phi(x)$$

Let's show these objective function as we increase k!!

















#### WHY IS THIS CALLED "PATH FOLLOWING"?

$$\Phi(\alpha) := \underset{x \in K}{\arg\min \alpha(\theta^{\top}x)} + \phi(x)$$

 As we increase inflation, the minimizer moves closer to the true desired minimum. We can plot this minimizer as α increases. This is known as the Central Path.



#### **CONVERGENCE RATE OF PATH FOLLOWING**

- Nesterov and Nemirovski showed:
  - 1. Best inflation rate is  $\alpha_k = (1 + 1/\sqrt{\nu})^k$
  - 2. Approx error after k iter is  $\epsilon = \frac{\nu}{(1+1/\sqrt{\nu})^k}$
  - 3. Hence, to achieve  $\epsilon$  error, need  $k = O(\sqrt{\nu} \cdot \log(\nu/\epsilon))$
- The barrier parameter v is pretty important. Nesterov and Nemirovski showed that every set has a self-concordant barrier with barrier parameter v = O(n)

#### THE PROBLEM: EFFICIENT SELF-CONCORDANT BARRIER IN GENERAL?

- Given any convex set K, how can we construct a selfconcordant barrier for K?
- Polytopes are easy. So are L2-balls. We have barriers for some other sets also, e.g. the PSD cone.
- PROBLEM: Find an efficient universal barrier construction?
- Open problem for some time.

#### THIS TALK — OUTLINE

- 1. The goal of Convex Optimization
- 2. Interior Point Methods and Path following
- 3. Hit-and-Run and Simulated Annealing
- 4. The Annealing-IPM Connection
- 5. Faster Optimization

#### SIMULATED ANNEALING FOR OPTIMIZATION



From Wikipedia: Optimization of a 1-dimensional function

#### **INTRODUCTION TO SIMULATED ANNEALING**

#### Your goal is to solve the optimization

$$\min_{x \in K} f(x)$$

Maybe it is easier to sample from the distribution

$$P_t(x) = \frac{\exp(-f(x)/t)}{\int_K \exp(-f(x')/t)dx'}$$

for a temperature parameter t

#### INTUITION BEHIND SIMULATED ANNEALING HEURISTIC

$$P_t(x) = \frac{\exp(-f(x)/t)}{\int_K \exp(-f(x')/t)dx'}$$

- Why is sampling easier? And why would it help anyway?
- First, when t is very large, sampling from P<sub>t</sub>(θ) is equivalent to sampling from the uniform distribution on K. Easy(ish)!
- Second, when t is very small, all mass of P<sub>t</sub>(θ) is concentrated around minimizer of f(x). That's what we want!
- Third, the successive distributions  $P_t(\theta)$  and  $P_{t+1}(\theta)$  are all very close, so we can "warm start" from previous samples

#### HIT-AND-RUN FOR LOG-CONCAVE DISTRIBUTIONS

$$P_t(x) = \frac{\exp(-f(x)/t)}{\int_K \exp(-f(x')/t)dx'}$$

Notice that f() convex in  $x ==> \log P_t$  is concave in x

- Lovasz/Vempala showed that problem of sampling logconcave dists is poly-time using Hit-And-Run random walk ...... IF you have a warm start (more on this later)
- Hit-And-Run is an interesting randomization procedure to sample from a convex body, with an interesting history

#### WHO INVENTED HIT-AND-RUN?





Dr. Smith is the Altarum/EKIM Kussell D. O'Neal Professor Emeritus of Engineering and Professor Emeritus of Industrial

Email address: IISMITN@UMICN.edu

#### HIT-AND-RUN

Inputs: distribution P, #iter N, initial  $X_0 \in K$ . For i = 1, 2, ..., N

1. Sample random direction  $u \sim N(0, I)$ 

2. Compute line segment  $R = \{X_{i-1} + \rho u : \rho \in \mathbb{R}\} \cap K$ 

3. Sample  $X_i$  from P restricted to R

Return  $X_N$ 

Claim: Hit-And-Run walk has stationary distribution P

Question: In what way does K enter into this random walk?

#### HIT-AND-RUN



### HIT-AND-RUN REQUIRES ONLY A MEMBERSHIP ORACLE

- Notice: a single update of Hit-And-Run required only computing the endpoints of a line segment.
- Can be accomplished using binary search with a *membership oracle*



#### POLYTIME SIMULATED ANNEALING CONVERGENCE RESULT

- Kalai and Vempala (2006) gave a poly-time guarantee for annealing using Hit-and-Run (membership oracle only!)
- 1. Sample from  $P_k(x) \propto \exp(-\theta^{\top} x/t_k)$
- 2. Successive dists are "close enough" if  $KL(P_{k+1}(x)||P_k(x)) \le 1/2$
- 3. The closeness is guaranteed as long as  $t_k \approx (1 1/\sqrt{n})^k$
- 4. Roughly  $O(\sqrt{n} \log 1/\epsilon)$  phases needed,  $O(n^3)$  Hit-and-Run steps needed for mixing, and O(n) samples needed per phase
- Total running time is about \$O(n^{4.5})\$















#### THE HEATPATH

 We can define a path according to the sequence of means one obtains as we turn down the temperature. Let

$$\chi(t) := \mathop{\mathbb{E}}_{X \sim \exp(-\theta^\top x/t)/Z} [X]$$

be the HeatPath.



#### FAST CONVEX OPT-SIMULATED ANNEALING-INTERIOR POINT METHODS

TWO Not Really Different CONVEX OPTIMIZATION TECHNIQUES

> Simulated Annealing via Hit-and-Run

Interior Point Methods via Path Following

#### THE EQUIVALENCE OF THE CENTRAL PATH AND THE HEAT PATH

Key result of A./Hazan 2015: there exists a barrier function φ() such that the CentralPath (for φ()) is *identically* the HeatPath for the sequence of annealing distributions





These are the same object

#### WHAT IS THE SPECIAL BARRIER?

- The barrier \u03c6() corresponds to the "differential entropy" of the exponential family distribution. Equivalently, it's the Fenchel conjugate of the log-partition function.
  - Let  $A(\theta) = \log \int_K \exp(\theta^\top x) dx$
  - Let  $A^*(x) = \sup_{\theta} \theta^\top x A(\theta)$
  - A fact about exponential families:  $\nabla A(\theta) = \mathbb{E}_{X \sim P_{\theta}}[X]$
  - A fact about Fenchel duality:  $\nabla A(\theta) = \arg \max_{x \in K} \theta^{\top} x A^*(x)$
- Guler 1996 showed this function is a barrier for cones. Bubeck and Eldan 2015 showed this in general, and gave an optimal parameter bound of n(1 + o(1)).

#### WHAT IS THE BENEFIT OF THIS CONNECTION?

- Benefit 1: This observation unifies to big areas of literature, and lets you borrow tricks from barrier methods to understand annealing, and vice versa
- Benefit 2: We were able to get a speedup on annealing using barrier methods, improving Kalai/Vempala's rate of O(n<sup>4.5</sup>) to O(v<sup>1/2</sup>n<sup>4</sup>)

