JACOB ABERNETHY — UNIVERSITY OF MICHIGAN
(JOINT WORK WITH ELAD HAZAN — PRINCETON)

FASTER CONVEX OPTIMIZATION

SIMULATED ANNEALING WITH AN
EFFICIENT UNIVERSAL BARRIER



FAST CONVEX OPT-SIMULATED ANNEALING-INTERIOR POINT METHODS

THIS TALK — OUTLINE

1. The goal of Convex Optimization

2. Interior Point Methods and Path following
3. Hit-and-Run and Simulated Annealing

4. The Annealing-IPM Connection

5. Faster Optimization
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GENERAL CONVEX OPTIMIZATION PROBLEM

» Let K be a bounded convex set, we want to solve

min @'
reK

» Can always convert non-linear objective into a linear one

min f(x) — min ¢
reK (z,c)e K xR
f(x)<c
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THE GRADIENT DESCENT ALGORITHM

» The gradient descent algorithm:

Fort=1,2,...:

Ty = -1 — NV f(@-1)
Lt — PI'OjK(ZAE/'t)

» Challenge: the Projection step can often be just as hard as
the original optimization
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GRADIENT DESCENT NOT IDEAL WITH LOTS OF CURVATURE

» The gradient descent algorithm doesn’t use any
knowledge of the curvature of objective function
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USE THE CURVATURE: NEWTON'S METHOD

» Newton’s Method is a “smarter” version of gradient
descent, moves along the gradient after a transformation

BAD: Need to invert NxN mtx
requires possible O(n*2.373...)
Fort=1,2,...:

Ty =21 — V f(xe_1)Vf(Ts_1)

\ GOOD: Typically this step

is not required
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NEWTON'S METHOD VERSUS GRADIENT DESCENT

Fort=1,2,...:
Ty = Tp_1 — V_Qf(l“t—l)vf(l‘t—l)

Lt — PrOjK(ft>

» For a quadratic
function, one only
needs a single
newton step to
reach the global
minimum
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WAIT! OUR ORIGINAL OBJECTIVE ISN'T CURVED...

» How does this help us with linear optimization?

. AT
;21[1(16’ T+ ()

» Add a curved function ¢() to the objective!
» ¢() should be “super-smooth” (more on this later)

» ¢() should be a “barrier”, i.e. goes to o on the boundary,
but not too quickly!
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OPTIMIZATION WITHOUTABARRIER ~ min 6 'z

re K




OPTIMIZATION WITH A BARRIER min @'z + ¢(x)

re K
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WHAT IS A GOOD BARRIER?

» What is needed for this “barrier func.” ¢()?

» Canonical example: if setis a polytope K ={x:Ax =< b} then
the logarithmic barrier suffices: ¢(x) = -) ; log(b; - Aix)

» In general, Nesterov and Nemirovski proved that the
following two conditions are sufficient. Any function
satisfying these conditions is a self-concordant barrier:

Violh, h, h
Volh

2(V2plh, h])3/2 and
VvV2e[h

VARRVA

» v isthe barrier parameter which will be important later
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ALGORITHM: INTERIOR POINT PATH FOLLOWING METHOD

» Nesterov and Nemirovski developed the sequential “path
following” method, described as follows:

e let a=(1+1/4/v) the “inflation” rate

e Fort=1,2,...
1. Update temperature: f,(z) := a"(0'z) + ¢(z)

2. Newton update: 2+ 2 Hl% V2 f1(2)V fr(Z)
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WHAT DOES THE SEQUENCE OF OBJECTIVES LOOK LIKE?

fu(z) = "0 ) + ¢(x)

» Let's show these objective function as we increase k!!
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P(a) := argen[gin a(0'z) + o)
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CONVERGENCE RATE OF PATH FOLLOWING

» Nesterov and Nemirovski showed:

1. Best inflation rate is az, = (1 + 1/4/v)"

2. Approx error after k iter is € = (ESYNL

3. Hence, to achieve € error, need k = O(y/v - log(v/€))

» The barrier parameter v is pretty important. Nesterov and
Nemirovski showed that every set has a self-concordant
barrier with barrier parameter v = O(n)
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THE PROBLEM: EFFICIENT SELF-CONCORDANT BARRIER IN GENERAL?

» Given any convex set K, how can we construct a self-
concordant barrier for K?

» Polytopes are easy. So are L2-balls. We have barriers for
some other sets also, e.g. the PSD cone.

» PROBLEM: Find an efficient universal barrier construction?

» Open problem for some time.
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THIS TALK — OUTLINE

1. The goal of Convex Optimization

2. Interior Point Methods and Path following
3. Hit-and-Run and Simulated Annealing

4. The Annealing-IPM Connection

5. Faster Optimization
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INTRODUCTION TO SIMULATED ANNEALING

» Your goal is to solve the optimization

min f(x)

rec K

» Maybe it is easier to sample from the distribution

_exp(=f(z)/t)
Jic exp(—f(2)/t)dx’

for a temperature parametert

Pi(x)
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INTUITION BEHIND SIMULATED ANNEALING HEURISTIC

_exp(=f(x)/1)
Jicexp(—f(2')/t)dx’

P (x)

» Why is sampling easier? And why would it help anyway?

» First, when tis very large, sampling from Py(0) is equivalent
to sampling from the uniform distribution on K. Easy(ish)!

» Second, when tis very small, all mass of P(6) is
concentrated around minimizer of f(x). That's what we want!

» Third, the successive distributions P.{(8) and P..¢(8) are all
very close, so we can "warm start” from previous samples
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HIT-AND-RUN FOR LOG-CONCAVE DISTRIBUTIONS

_exp(=f(x)/1)
Jicexp(—f(2')/t)dx’

» Notice that f() convex in x ==> log P is concave in x

P (x)

» Lovasz/Vempala showed that problem of sampling log-
concave dists is poly-time using Hit-And-Run random walk
.......... IF you have a warm start (more on this later)

» Hit-And-Run is an interesting randomization procedure to
sample from a convex body, with an interesting history



OF ENGINEERING

IND:U‘ TRIAL & OPERATIONS ENGINEERING

UNIVERSITY OF MICHIGAN

o | _ownven | oxoee oo mmm—-

NEWS AND EVENTS Search |

Home / People / Faculty / Robert L. Smith

Robert L. Smith, Altarum/ERIM Russell D, O'Nell Professor
Emeritus of Engineering, Ph.D. (Operations Research),
University of California, Berkeley, 1971

Recent 10E courses taught: 316,512,515,600,616,712
Office: 1733 10E
Phone: (734) 764-6473

Web page: www-personal.umich.edu/~rismith/

Email address: rismith@umich.edu

Dr. Smith is the Altarum/ERIM Russell D. O'Neal Professor
Emeritus of Engineering and Professor Emeritus of Industrial




FAST CONVEX OPT-SIMULATED ANNEALING-INTERIOR POINT METHODS 31

HIT-AND-RUN

Inputs: distribution P, #iter NV, initial X, € K.
For:=1,2... N

1. Sample random direction u ~ N (0, I)
2. Compute line segment R =4{X;, 1 +pu : pe R} NK
3. Sample X, from P restricted to R

Return Xy

» Claim: Hit-And-Run walk has stationary distribution P

» Question: In what way does K enter into this random walk?
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POLYTIME SIMULATED ANNEALING CONVERGENCE RESULT

» Kalai and Vempala (2006) gave a poly-time guarantee for
annealing using Hit-and-Run (membership oracle only!)

1. Sample from P, () oc exp(—0"x/t;)
2. Successive dists are “close enough” if KL( Py 1(x)||Pe(x)) < 1/2
3. The closeness is guaranteed as long as t;, ~ (1 — 1/y/n)*

4. Roughly O(y/nlog1/¢) phases needed, O(n?) Hit-and-Run steps needed
for mixing, and O(n) samples needed per phase

» Total running time is about $O(n”{4.5})$
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WHAT IS THE SPECIAL BARRIER?

» The barrier ¢() corresponds to the “differential entropy” of the
exponential family distribution. Equivalently, it's the Fenchel conjugate
of the log-partition function.

o Let A(0) =log [, exp(0'z)dx
o Let A*(x) = sup, 'z — A(0)
e A fact about exponential families: VA(0) = Exp, [ X]

o A fact about Fenchel duality: VA(#) = arg max,cx 0' v — A*(x)

» Guler 1996 showed this function is a barrier for cones. Bubeck and

Eldan 2015 showed this in general, and gave an optimal parameter
bound of n(1 + o(1)).
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WHAT IS THE BENEFIT OF THIS CONNECTION?

» Benefit 1: This observation unifies to big areas of literature,
and lets you borrow tricks from barrier methods to
understand annealing, and vice versa

» Benefit 2: We were able to get a speedup on annealing
using barrier methods, improving Kalai/Vempala's rate of

O(n4°5) to O(v1/2n4)
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