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Learning (from) Networks



Large-scale Data-driven Problems

Social Sciences

Millions of people, firms

finances, services

Biological Sciences

>20,000 genes, proteins

Million SNPs, neurons

Extracting Information from Data

Developing scalable algorithms

with theoretical guarantees

and significant applications



Representing Complex Relationships in a Network

Biological Networks

Regulatory, protein interactions

signaling, metabolic, brain

ENCODE, modENCODE, TCGA

GTEx, Roadmap epigenomics

Datasets Utilized



Level 1: Learning Relationships in Data (Network Inference)

Nonlinear Interactions

Network Maximal Correlation
(Feizi et al. 2015)

Diverse/Incomplete Data

Regulatory Network Integration
(Feizi et al. 2014)

Combinatorial Problems

Spectral Network Inference
(Paul and Feizi, 2015)

Noise/Uncertainty

Network Deconvolution

Transitive noise (Feizi et al. 13)



Level 2: Learning Structures in Data (Network Analysis)



Modules/Clusters

Spectral Network Clustering
(O'Connor, Médard, Feizi, 2015)

Level 2: Learning Structures in Data (Network Analysis)



Level 2: Learning Structures in Data (Network Analysis)

Modules/Clusters

Spectral Network Clustering
(O'Connor, Médard, Feizi, 2015)

Bipartite Graph Clustering

Biclustering using Mess. Pass.
(O'Connor and Feizi, 2014)



Disease-related Genes

Genome-wide studies (GWAS)

Gene set enrichment analysis

Upstream genes (Sources)

Level 2: Learning Structures in Data (Network Analysis)



Spread of Information

Viruses, rumors, news
Who is the source(s)?

Source Inference in Networks

Network Infusion (Feizi et al. 2014)

Level 2: Learning Structures in Data (Network Analysis)



Disease-related Genes

Over Human Gene Network

Validating drugs, 

treatments in 

other animals

Level 3: Validating (Disease) Signals in (Biological) Networks



Disease-related Genes

Over Fly Gene Network

Network Alignment

Spectral Alignment of Networks
(Feizi et al. 2015)

Validating drugs, 

treatments in 

other animals

Level 3: Validating (Disease) Signals in (Biological) Networks



• Network Integration (Feizi et al., 2014)

• Network Deconvolution (Feizi et al., 2013)

• Network Maximal Correlation (Feizi et al., 2015)

• Spectral DAG Inference (Paul and Feizi 2015)

Network Inference:

Joint work with A. Makhdoumi, K. Duffy, 

M. Kellis, and M. Médard

1. Inference

2. Analysis

3. Validation

0. Data



Pairwise Association Measures

Linear correlation (Pearson 1880)

• Does not capture nonlinear associations

Mutual Information (Shannon 1948)

• Provides association strength, 

not functions

Maximal Correlation 
(Hirschfeld 1935, Gebelein 1941)

• Finding transformations with 

maximum correlation

• Provides association strength and functions

• Properties, computation, convergence (Rényi 1959, Sarmonov 1962, Greenacre

1984, Courtade 2003, Raginsky 2014, etc)

A unifying framework based on projections on Hilbert spaces 

Network Maximal Correlation 



Variables connected over a given network

• Extensions for graphical models, 

relevance graphs

Multiple MC over edges leads to 2|E| functions

• Each variable assigned to multiple 

transformations

• Difficult to interpret, over-fitting issues

Network Maximal Correlation (NMC)

Idea: assigning single function to each 

variable maximizing total correlation



Network Maximal Correlation (NMC)

Basis expansion over Hilbert spaces

Optimization over 

real vectors

Optimization over 

functions

orthonormal 

basis

coefficients

Inference of graphical models for unknown functions of Gaussian 

variables

If Hilbert spaces are compact, optimal 

solution exists



Graphical Model Inference
Graphical models: crucial in modern statistics

• Characterize conditional independency

• Succinct representation of data

• Efficient computation of marginals, mode 

• Example: Bayesian networks, Markov Random Fields

graphical models for nonlinear 

functions of Gaussians

network
edges

edge 
potential

node 
potential

Existing methods for binary variables 

(Bresler 2015), Gaussian variables, 

exponential variables (Wainwright-Jordan 

2008), Semiparametric Copula, 

monotone functions (Liu et al. 2012), 

Kernel embedding (Song et al 2010)



Graphical Model Inference
Setup:

jointly 

Gaussian
bijective

unknown

observed
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Covariance matrix

Precision matrix (        )

If
Theorem:



Proof Sketch of Graphical Model Inference 

Theorem+ Intuition

Replace in the NMC optimization

Define:



Basis expansion over Hilbert spaces Hermitte-Chebychev 

polynomials

Gaussian density

Key property:

Proof Sketch of Graphical Model Inference 

Theorem+ Intuition

orthonormal 

basis

coefficients

Correlation coef.



correlation
coefficient

Proof Sketch of Graphical Model Inference 

Theorem+ Intuition



Proof Sketch of Graphical Model Inference 

Theorem+ Intuition



mean zero
Identity 

basis

non-identity 

bases

Proof Sketch of Graphical Model Inference 

Theorem+ Intuition



Proof based on Lagrange multiplier 
condition (Jeyakumar et al. 2007) and 
Gerschgorin's circle theorem

Lemma: Global optimum

Proof Sketch of Graphical Model Inference 

Theorem+ Intuition

Positively-Dominant (PD) correlation 

coefficients 

transformations of

observed variables
latent 

variables



Statistical Properties of NMC
Sample NMC converges exponentially fast to NMC

Efficient algorithm to compute NMC based on Alternating Conditional 

Expectation (Breiman & Friedman 1985)

Distributed NMC computation based on graph partitioning

smallest marginal prob.

Proof idea: convergence rate of empirical distributions (Devroye 1983, 

Berend and Kontorovich 2012)

number of 

samples

NMC for discrete variables → Maximum Correlation Problem (Hotelling

1935), Multivariate Eigenvalue Problem (Chu et al. 1993)

Inference of nonlinear interactions in cancer



Inferring Nonlinear Gene Modules in Cancer

TCGA dataset: The Cancer

Genome Atlas

RNA seq. counts for 24 cancer 

types: breast cancer, kidney 

cancer, liver cancer, etc

Glioma cancer

Nonlinear gene 

module

Nonlinear gene modules: 

present over NMC network, 

but not in linear network

Spectral network clustering 
(O‘Connor*, Médard, Feizi*, 2015)

We identified gene interactions 

with the highest nonlinear 

associations



Validation Using Survival Time Analysis

Divide cancer patients to two equal-

size groups based on average 

expression of gene module

high exp. low exp.

Question: do patient survival 

times in two groups differ 

significantly?

• Estimate survival function 
(Kaplan-Meier 1958)

• Log-rank p-value (Bland and Altman 

2004)

• Multiple hypothesis correction 
(Benjamini and Hochberg 1995)
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Validation Using Survival Time Analysis

Divide cancer patients to two equal-

size groups based on average 

expression of gene module

high exp. low exp.

Question: do patient survival 

times in two groups differ 

significantly?

• Estimate survival function 
(Kaplan-Meier 1958)

• Log-rank p-value (Bland and Altman 

2004)

• Multiple hypothesis correction 
(Benjamini and Hochberg 1995)

More than 80% of cancer 

patients with high expression 

of this gene module survive 

less than two years

Network Maximal Correlation

Key idea: computing optimal transformations to reveal 

nonlinear dependencies

Technique used: basis expansion over Hilbert spaces

Applications: graphical model inference, nonlinear 

gene modules in cancer

Thinking beyond linear models: nonlinear regression, 

nonlinear principle component analysis, …



Network Analysis:

• Network Biclutering (O'Connor and Feizi, 2014)

• Network Clustering (O'Connor et al., 2015)

• Network Infusion (Feizi et al., 2014)

Joint work with L. O’Connor and M. Médard

1. Inference

2. Analysis

3. Validation

0. Data



Network Clustering: finding nodes that are heavily interacting 

with each other but not with others



Network Clustering: finding nodes that are heavily interacting 

with each other but not with others



Prior Work on Network Clustering

Missing heterogeneity within blocks: 

degree-dependent structures

Sensitivity with respect to network 

clustering setup

Stochastic Block Models (SBMs)

Network Clustering Methods: Modularity (Newman 2006), Laplacian (Moher at al. 

1991), normalized Laplacian (Chung 1997), Beth Hessian (Saade et al. 2014), SDP-

based methods (Amini et al 2014, Hajek et al. 2015), Degree-Corrected (Qin and Rohe, 2013)

Performance characterizations (Decelle 11, Sussman et al. 12, Abbe at al 14, Zhang et al 14, 

Chen and Hero 15, etc)
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Random Dot Product Graphs 
(Kraetzel et al 2005):

link 
function

edge
probability

latent position 
vectors

Link function is linear

Constraints to have valid probabilities

Some methods for ML inference (Young et 

al. 2007, Sussman et al. 12, Athreya et al. 2013) Idea: logistic link function



Maximum Likelihood Inference

• Link function is a logistic function

• No constraints to have valid probabilities

• Includes most SBMs and linear RDPGs

Logistic RDPG:

Under some conditions, ML inference of latent vectors can 

be solved asymptotically exactly using spectral clustering

offset parameter

Proof Sketch:

Linear 

term

ML inference using logistic link function:

Approximate the nonlinear term using the first and second order 

terms in its Taylor expansion



Spectral Inference Algorithm- Asym. Exact

...

top d eigenvectors

...

Logistic

Regression

...
ML solution:

k-means clustering 

over latent vectors



Performance Evaluations

Efficient computation 

even for large networks

Robust performance 

under various network 

clustering setups

Theoretical performance 

guarantees



Performance Evaluations

Efficient computation 

even for large networks

Robust performance 

under various network 

clustering setups

Theoretical performance 

guarantees

Inference of low dimensional latent vectors

Key idea: using logistic link function in RDPG model

Key technique: spectral method to solve ML inference

Application: network clustering



Network Alignment:

• Spectral Alignment of Networks (Feizi et al. 

2015)

Joint work with G. Quon, M. Médard, 

M. Kellis, and A. Jadbabaie

1. Inference

2. Analysis

3. Validation

0. Data





Applications of Network Alignment: 

• Comparative analysis across species

• Validation of candidate human drugs in mouse and model organisms

• Data de-anonymization using dataset similarities



match mismatch

1 1’

2 2’

1 1’

2 2’

Network Alignment- Objective Function

Goal: Identifying mappings between nodes of two networks that 

preserve connectivity structures

Existing practical network alignment methods: maximize # of matches

Mismatch effects have been ignored

• Many mismatched across biological networks

Idea #1:proposed objective

(# matches) - (# mismatches)

Relative match-

mismatch importance 

Quadratic Assignment Problem

QAP is NP-hard (Makarychev et al. 2010)



Prior work on QAP
Exact search methods: based on branch-and-bound (Bazarra et al. 1983)

and cutting plane (Bazarra et al. 1983)

Linearizations: transform QAP into a mixed integer linear program

• Lawlers linearization, Kaufmann and Broeckx linearization, Frieze 

and Yadegar linearization, Adams and Johnson linearization

Semidefinite/convex relaxations: intersection of orthogonal and 

stochastic matrices

• Orthogonal relaxations (Finke et al. 1987), projected eigenvalue bounds (Hadley 

et al. 1992), convex relaxations (Anstreicher et al. 2001, Zhao et al. 1998), and matrix 
splitting (Peng et al. 2010)

Other relaxations: Bayesian framework (Kolar et al. 2012), message 

passing (Bayati et al. 2013), spectral methods (Singh et al. 2008, Liao et al. 2009)

An efficient method with some theoretical 

guarantees and low computational complexity 



Quadratic Assignment Problem (QAP)

Permutation

matrix optimum

Set of all

permutation matrices



Orthogonal Relaxation of QAP

Set of all

orthogonal matrices optimum

orthogonal matrix

Step 1: Relaxation over orthogonal matrices

• Exact solution using spectral matrix decomposition Finke et al. 1987

• Optimum may not be a permutation



Ellipsoid Level Sets of QAP

Set of all

orthogonal matrices

Step 1: Relaxation over orthogonal matrices

• Exact solution using spectral matrix decomposition Finke et al. 1987

• Optimum may not be a permutation

Step 2: Projection tangent to level sets

• Efficient computation using maximum weight bipartite matching 

Linear Programming, Hungarian method Kuhn 1955, Greedy 

generalized Sharkey, Edwin Romeijn 2010



Spectral Alignment of Networks

• Asymptotically exact for Erdös-Rényi graphs (under some 

conditions) 

• Alignment of graphs with structures: modular networks (tighter 

bounds using SDP

• Validations on synthetic networks: power-law, regular, modular 

graphs

• Applied to Twitter subgraphs, user de-anonymization

Further results:

Comparative gene network analysis across species

singular values

Theorem:



Alignment of Gene Regulatory Networks

Conserved biological process 

across human and fly
Human network: 19,088 genes

Fly network: 12,897 genes

Goal: inferring bijective 

mappings across two graphs 

(restricted to homolog genes)

Our spectral method leads to 

balanced # of matches and 

mismatches (fewest # 

mismatches, the 2nd highest # 

matches) 

Strong conservation of 

centrality measures, and 

several  biological processes



Spectral Alignment of Networks

Asymptotically exact for Erdös-Rényi graphs (under some 

conditions) 

• Proof based on algebraic characterization of eigenvectors+ 

matrix perturbation theory

• Alignment of graphs with structures: modular networks (tighter 

bounds using SDP

• Validations on synthetic networks: power-law, regular, modular 

graphs

• Applied to compare gene networks across human, fly and worm. 

Strong conservation of centrality measures, biological pathways

• Applied to Twitter subgraphs, user de-anonymization

Further results:

Spectral Alignment of Networks

Key ideas: matches and mismatches+ spectral 

relaxation of QAP

Key technique: spectral decomposition + maximum 

weight bipartite matching

Applications: comparative analysis of gene networks, 

Twitter subgraphs

Thinking beyond edges: representing graphs using 

eigenvectors and eigenvalues



• Network Integration

• Network Deconvolution

 Network Maximal Correlation

• Spectral DAG Inference

Network Inference:

Network Analysis/Validation:

 Network Alignment

• Network Biclutering

 Network Clustering

• Network Infusion1. Inference

2. Analysis

3. Validation

0. Data
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