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Introduction
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Some philosophical questions

• How we (as a network of social agents) make common choices or
inferences about the world?

• If I want to help you learn, should I tell you my evidence or just
my opinion?

• How much do we need to communicate with each other?

Rutgers Sarwate
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Which may have some applications (?)

• Distributed monitoring in networks (estimating a state).

• Hypothesis testing or detection using multi-modal sensors.

• Models for vocabulary evolution.

• Social learning in animals.

Rutgers Sarwate
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Estimation

First simple model: estimate a histogram of local data.

• Each agent starts with a single color.

• Pass message to learn the histogram of initial colors or sample
from that histogram.

• Main focus: simple protocols with limited communication.

Rutgers Sarwate
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Hypothesis testing

Second simple model: estimate a global parameter θ∗.

• Each agent takes observations over time conditioned on θ∗.

• Can do local updates followed by communication with neighbors.

• Main focus: simple rule and rate of convergence.

Rutgers Sarwate
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Social learning

✓1 ✓2

✓3

✓i
✓4

Social learning focuses on simple models for how (human) networks
can form consensus opinions:
• Consensus-based DeGroot model: gossip, average consensus etc.
• Bayesian social learning (Acemoglu et al., Bala and Goyal):

agents make decisions and are observed by other agents.
• Opinion dynamics where agents change beliefs based on beliefs of

nearby neighbors.
Rutgers Sarwate



UMich EECS 2015 8 / 48

On limited messages

Both of our problems involve some sort of average consensus step. In
the first part we are interested in exchanging approximate messages.

• Lots of work in quantized consensus (Aysal-Coates-Rabbat, Carli
et al., Kashyap et al. Lavaei and Murray, Nedic et al, Srivastava
and Nedic, Zhu and Martinez)

• Time-varying network topologies (even more references).

• Pretty mature area at this point.
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A roadmap
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• “Social sampling” and estimating histograms

• Distributed hypothesis testing and network divergence

• Some ongoing work and future ideas.
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Social sampling and merging opinions

A.D. Sarwate, T. Javidi, Distributed Learning of Distributions via Social Sampling, IEEE
Transactions on Automatic Control 60(1): pp. 34–45, January 2015.

Rutgers Sarwate
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Consensus and dynamics in networks

• Collection of individuals or agents

• Agents observe part of a global phenomenon

• Network of connections for communication

Rutgers Sarwate
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Phenomena vs. protocols
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Engineering:

• Focus on algorithms

• Minimize communication cost

• How much do we lose vs.
centralized?

Phenomenological:

• Focus on modeling

• Simple protocols

• What behaviors emerge?
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Why simple protocols?

✓1 ✓2

✓3

✓i
✓4

We are more interested in developing simple models that can exhibit
different phenomena.

• Simple source models.

• Simple communication that uses fewer resources.

• Simple update rules that are easier to analyze.

Rutgers Sarwate
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Communication and graph

✓1 ✓2

✓3
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• The n agents are arranged in a connected graph G.

• Agent i broadcasts to neighbors Ni in the graph.

• Message Yi(t) lies in a discrete set.

Rutgers Sarwate
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The problem

• Each agent starts with θi ∈ {1, 2, . . . ,M}
• Agent i knows θi (no noise)

• Maintain estimates Qi(t) of the empirical distribution Π of {θi}

Rutgers Sarwate
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Social sampling

We model the messages as random samples from local estimates.

1 Update rule from Qi(t− 1) to Qi(t) :

Qi(t) = Wi (Qi(t− 1), Xi(t), Yi(t− 1), {Yj(t− 1) : j ∈ Ni}, t) .

2 Build a sampling distribution on {0, 1, . . . ,M}:

Pi(t) = Vi(Qi(t), t).

3 Sample message:
Yi(t) ∼ Pi(t).

Rutgers Sarwate
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Social sampling
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Possible phenomena
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Possible phenomena
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Linear update rule

Qi(t) = Ai(t)Qi(t− 1) +Bi(t)Yi(t− 1) +
∑

j∈Ni

Wij(t)Yj(t− 1)

• Linear update rule combining Yi ∼ Pi and Qi.

• Exhibits different behavior depending on Ai(t), Bi(t), and W (t).

Rutgers Sarwate
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Convergence

Main idea : massage the update rule into matrix form:

Q(t+ 1) = Q(t) + δ(t)
[
H̄Q(t) + C(t) + M(t)

]
.

with

1 Step size δ(t) = 1/t

2 Perturbation C(t) = O(δ(t))

3 Martingale difference term M(t)

This is a stochastic approximation: converges to a fixed point of H̄.

Rutgers Sarwate



UMich EECS 2015 > Estimating Histograms 21 / 48

Example: censored updates

Suppose we make distribution Pi(t) a censored version of Qi(t):

Pi,m(t) = Qi,m(t) · 1 (Qi,m(t) > δ(t)(1−Wii)))

Pi,0(t) =

M∑

m=1

Qi,m(t) · 1 (Qi,m(t) ≤ δ(t)(1−Wii))

Agent sends Yi(t) = 0 if it samples a “rare” element in Qi.

Rutgers Sarwate



UMich EECS 2015 > Estimating Histograms 21 / 48

Example: censored updates

Suppose we make distribution Pi(t) a censored version of Qi(t):

Pi,m(t) = Qi,m(t) · 1 (Qi,m(t) > δ(t)(1−Wii)))

Pi,0(t) =

M∑

m=1

Qi,m(t) · 1 (Qi,m(t) ≤ δ(t)(1−Wii))

Agent sends Yi(t) = 0 if it samples a “rare” element in Qi.

Rutgers Sarwate



UMich EECS 2015 > Estimating Histograms 22 / 48

Phenomena captured by censored model
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• Censored distribution Pi(t) guards against “marginal opinions.”

• Sampled messages Yi(t) ∼ Pi(t) are simple messages.

• Decaying weights δ(t) represent solidifying of opinions.

Result : all estimates converge almost surely to Π.
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Future directions

• Find the rate of convergence and dependence of the rate on the
parameters

• Investigate the robustness of the update rule to noise and
perturbations

• Continuous distributions?

• Other message passing algorithms?

• Distributed optimization?

Rutgers Sarwate
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“Non-Bayesian” social learning

A. Lalitha, T. Javidi, A. Sarwate, Social Learning and Distributed Hypothesis Testing,
ArXiV report number arXiv:1410.4307 [math.ST], October, 2014.

Rutgers Sarwate
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Model

• Set of n nodes.

• Set of hypotheses
Θ = {θ1, θ2, . . . , θM}.

• Observations X
(t)
i are i.i.d.

• Fixed known distributions
{fi(·; θ1), fi(·; θ2), . . . , fi(·; θM )}.

• θ∗ ∈ Θ is fixed global unknown
parameter

• X(t)
i ∼ fi(·; θ∗).

GOAL Parametric inference of unknown θ∗

Rutgers Sarwate
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Hypothesis Testing

If θ∗ is globally identifiable, then

collecting all observations

X(t) = {X(t)
1 , X

(t)
2 , . . . , X(t)

n }

at a central locations yields a

centralized hypothesis testing problem.

Exponentially fast convergence to the

true hypothesis

Can this be achieved locally with low

dimensional observations?

Rutgers Sarwate
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Example: Low-dimensional Observations

If all observations are not collected centrally, node 1 individually cannot learn
θ∗.

=⇒ nodes must communicate.

Rutgers Sarwate
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Distributed Hypothesis Testing

• Define Θ̄i = {θ ∈ Θ : fi(·; θ) =
fi(·; θ∗)}.

• θ ∈ Θ̄i

=⇒ θ and θ∗ are observationally
equivalent for node i.

• Suppose
{θ∗} = Θ̄1 ∩ Θ̄2 ∩ . . . ∩ Θ̄n.

GOAL Parametric inference of unknown θ∗

Rutgers Sarwate
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GOAL Parametric inference of unknown θ∗

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 28 / 48

Distributed Hypothesis Testing

• Define Θ̄i = {θ ∈ Θ : fi(·; θ) =
fi(·; θ∗)}.

• θ ∈ Θ̄i

=⇒ θ and θ∗ are observationally
equivalent for node i.

• Suppose
{θ∗} = Θ̄1 ∩ Θ̄2 ∩ . . . ∩ Θ̄n.

GOAL Parametric inference of unknown θ∗

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 29 / 48

Learning Rule

• At t = 0, node i begins with

initial estimate vector q
(0)
i > 0,

where components of q
(t)
i form a

probability distribution on Θ.

• At t > 0, node i draws X
(t)
i .
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Learning Rule

• Node i computes belief vector,

b
(t)
i , via Bayesian update

b
(t)
i (θ) =

fi

(
X

(t)
i ; θ

)
q

(t−1)
i (θ)

∑
θ′∈Θ fi

(
X

(t)
i ; θ′

)
q

(t−1)
i (θ′)

.

• Sends message Y
(t)
i = b

(t)
i .
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Learning Rule

• Receives messages from its
neighbors at the same time.

• Updates q
(t)
i via averaging of log

beliefs,

q
(t)
i (θ) =

exp
(∑n

j=1Wij log b
(t)
j (θ)

)

∑
θ′∈Θ exp

(∑n
j=1Wij log b

(t)
j (θ′)

) ,

where weight Wij denotes the
influence of node j on estimate
of node i.

• Put t = t+ 1 and repeat.
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In a picture

Bayesian
Update

Xi(t) ⇠ fi(·|✓⇤)

bi(✓, t) =
fi(Xi(t)|✓)P

✓0 fi(Xi(t)|✓)Qi(✓, t)

Qi(✓, t)

Qi(✓, t + 1) =
exp

⇣Pn
j=1 Wij log bj(✓, t)

⌘

P
✓02⇥ exp

⇣Pn
j=1 Wij log bj(✓0, t)

⌘ .

Average 
log-beliefs {bj(✓, t)} messages from

neighbors

local observations
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An example

When connected in a network, using the proposed learning rule node 1 learns
θ∗.

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 33 / 48

An example

When connected in a network, using the proposed learning rule node 1 learns
θ∗.

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 34 / 48

Assumptions

Assumption 1

For every pair θ 6= θ∗, fi (·; θ∗) 6= fi (·; θ) for at least one node, i.e the
KL-divergence D (fi (·; θ∗)‖ fi (·; θ)) > 0.

Assumption 2

The stochastic matrix W is irreducible.

Assumption 3

For all i ∈ [n], the initial estimate q
(0)
i (θ) > 0 for every θ ∈ Θ.
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Convergence Results

• Let θ∗ be the unknown fixed parameter.

• Suppose assumptions 1− 3 hold.

• The eigenvector centrality v = [v1, v2, . . . , vn] is the left eigenvector of
W for eigenvalue 1.

Theorem: Rate of rejecting θ 6= θ∗

Every node i’s estimate of θ 6= θ∗ almost surely converges to 0 exponentially
fast. Mathematically,

− lim
t→∞

1

t
log q

(t)
i (θ) = K(θ∗, θ) P-a.s.

where K(θ∗, θ) =
∑n
j=1 vjD (fj (·; θ∗)‖ fj (·; θ)).

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 35 / 48

Convergence Results

• Let θ∗ be the unknown fixed parameter.

• Suppose assumptions 1− 3 hold.

• The eigenvector centrality v = [v1, v2, . . . , vn] is the left eigenvector of
W for eigenvalue 1.

Theorem: Rate of rejecting θ 6= θ∗

Every node i’s estimate of θ 6= θ∗ almost surely converges to 0 exponentially
fast. Mathematically,

− lim
t→∞

1

t
log q

(t)
i (θ) = K(θ∗, θ) P-a.s.

where K(θ∗, θ) =
∑n
j=1 vjD (fj (·; θ∗)‖ fj (·; θ)).

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 36 / 48

Example: Network-wide Learning

• Θ = {θ1, θ2, θ3, θ4} and θ∗ = θ1.

• If i and j are connected,
Wij = 1

degree of node i , otherwise 0.

• v = [ 1
12 ,

1
8 ,

1
12 ,

1
8 ,

1
6 ,

1
8 ,

1
12 ,

1
8 ,

1
12 ].
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Example

Θ̄1 = {θ∗}, Θ̄i = Θ i 6= 1 Θ̄5 = {θ∗}, Θ̄i = Θ i 6= 5

Rutgers Sarwate
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Corollaries

Theorem: Rate of rejecting θ 6= θ∗

Every node i’s estimate of θ 6= θ∗ almost surely converges to 0 exponentially
fast. Mathematically,

− lim
t→∞

1

t
log q

(t)
i (θ) = K(θ∗, θ) P-a.s.

where K(θ∗, θ) =
∑n
j=1 vjD (fj (·; θ∗)‖ fj (·; θ)).

Lower bound on rate of convergence to θ∗

For every node i, the rate at which error in the estimate of θ∗ goes to zero
can be lower bounded as

− lim
t→∞

1

t
log
(

1− q(t)
i (θ∗)

)
= min
θ 6=θ∗

K(θ∗, θ) P-a.s.
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Corollaries

Lower bound on rate of learning

The rate of learning λ across the network can be lower bounded as,

λ ≥ min
θ∗∈Θ

min
θ 6=θ∗

K(θ∗, θ) P-a.s.

where,

λ = lim inf
t→∞

1

t
| log et|,

and

et =
1

2

n∑

i=1

||q(t)
i (·)− 1θ∗(.)||1 =

n∑

i=1

∑

θ 6=θ∗
q

(t)
i (θ).

Rutgers Sarwate



UMich EECS 2015 > Pseudo-Bayes 40 / 48

Example: Periodicity

✓1 ✓2

✓3 ✓4

node 1 can distinguish

no
de

 2
 c

an
 

di
st

in
gu

is
h

• Θ = {θ1, θ2, θ3, θ4}
and θ∗ = θ1.

• Underlying graph is
periodic,

W =

(
0 1
1 0

)
.
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Example: Networks with Large Mixing Times

✓1 ✓2

✓3 ✓4

node 1 can distinguish

no
de

 2
 c

an
 

di
st

in
gu

is
h

• Θ = {θ1, θ2, θ3, θ4}
and θ∗ = θ1.

• Underlying graph is
aperiodic,

W =

(
0.9 0.1
0.4 0.6

)
.
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Concentration Result

Assumption 4

For k ∈ [n], X ∈ Xk, and for any given θi, θj ∈ Θ such that θi 6= θj ,∣∣∣log fk(·;θi)
fk(·;θj)

∣∣∣ is bounded, denoted by L.

Theorem

Under Assumptions 1–4, for every ε > 0 there exists a T such that for all
t ≥ T and for every θ 6= θ∗ and i ∈ [n] we have

Pr
(

log q
(t)
i (θ) ≥ −(K(θ∗, θ)− ε)t

)
≤ γ(ε, L, t),

and
Pr
(

log q
(t)
i (θ) ≤ −(K(θ∗, θ) + ε)t

)
≤ γ(

ε

2
, L, t),

where L is a finite constant and γ(ε, L, t) = 2 exp
(
− ε2t

2L2d

)
.
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Related Work and Contribution

Jadbabaie et al. use local Bayesian update of beliefs followed by averaging the

beliefs.

• Show exponential convergence with no closed form of convergence rate. [’12]

• Provide an upper bound on learning rate. [’13]

We average the log beliefs instead.

• Provide a lower bound on learning rate λ̃.

• Lower bound on learning rate is greater than the upper bound

=⇒ Our learning rule converges faster.

Shahrampour and Jadbabaie, ’13 formulated a stochastic optimization learning

problem; obtained a dual-based learning rule for doubly stochastic W ,

• Provide closed-form lower bound on rate of identifying θ∗.

• Using our rule we achieve the same lower bound (from corollary 1)

min
θ 6=θ∗

(
1

n

n∑
j=1

D(fj(·; θ∗)||fj(·; θ))

)
.
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Related Work and Contribution

An update rule similar to ours was used in Rahnama Rad and Tahbaz-Salehi, 2010

to

• Show that node’s belief converges in probability to the true parameter.

• However, under certain analytic assumptions.

For general model and discrete parameter spaces we show almost-sure exponentially

fast convergence.

Shahrampour et. al. and Nedic et. al. (independently) showed that our learning

rule coincides with distributed stochastic optimization based learning rule (W

irreducible and aperiodic)
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Social sampling to estimate histograms

i j

Yi(t)

Yj(t)

Xi Xj
i j

Wij

Wji

trust

Qi(0) Qj(0)

messages

i j

Yi(t)

Yj(t)

update

Qi(1) Qj(1)

Qi(0) Qj(0)

i j

Wij

Wji

t ! 1

Qi(t) Qj(t)

• Simple model of randomized message exchange.

• Unified analysis captures different qualitative behaviors.

• “Censoring rule” to achieve consensus to true histogram.
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Hypothesis testing and “semi-Bayes”

Local
Update

Social
Update

Send
Msg

Get
Data

Xi(t) {Yj(t)}

Qi(t) Qi(t + 1)

• Combination of local Bayesian updates and averaging.

• Network divergence: an intuitive measure for the rate of
convergence.

• “Posterior consistency” gives a Bayesio-frequentist analysis.
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Looking forward

✓1 ✓2

✓3

✓i
✓4

• Continuous distributions and parameters.

• Applications to distributed optimization.

• Time-varying case.
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Thank You!

Rutgers Sarwate
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