
1

Efficient Data-Driven Learning of Sparse Signal
Models and Its Applications

Saiprasad Ravishankar

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

Dec 10, 2015

S. Ravishankar Adaptive Sparse Signal Models



2

Outline of Talk

Synthesis & Transform models.

Transform learning: Efficient, Scalable, Effective, Guarantees.

Transform learning methods:

Union of transforms (OCTOBOS) learning

Online transform learning for big data

Applications: Compression, Denoising, Compressed sensing, Classification.

Conclusions

Fig. from B. Wen, UIUC.
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Synthesis Model for Sparse Representation

Given a signal y ∈ Rn, and dictionary D ∈ Rn×K , we assume
y = Dx with ‖x‖0 ≪ K .

Real world signals modeled as y = Dx + e, e is deviation term.

Given D, sparsity level s, the synthesis sparse coding problem is

x̂ = argmin
x

‖y − Dx‖
2
2 s.t. ‖x‖0 ≤ s

This problem is NP-hard.

Dictionary-based approaches are often computationally expensive.
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Transform Model for Sparse Representation

Given a signal y ∈ Rn, and transform W ∈ Rm×n, we model
Wy = x + η with ‖x‖0 ≪ m and η - error term.

Natural signals are approximately sparse in Wavelets, DCT.

Given W , and sparsity s, transform sparse coding is

x̂ = argmin
x

‖Wy − x‖22 s.t. ‖x‖0 ≤ s

x̂ = Hs(Wy) computed by thresholding Wy to the s largest magnitude

elements. Sparse coding is cheap! Signal recovered as W †x̂ .

Sparsifying transforms exploited for compression (JPEG2000), etc.
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Key Topic of Talk: Sparsifying Transform Learning

Square Transform Models

Unstructured transform learning [IEEE TSP, 2013 & 2015]

Doubly sparse transform learning [IEEE TIP, 2013]

Online learning for Big Data [IEEE JSTSP, 2015]

Convex formulations for transform learning [ICASSP, 2014]

Overcomplete Transform Models

Unstructured overcomplete transform learning [ICASSP, 2013]

Learning structured overcomplete transforms with block cosparsity
(OCTOBOS) [IJCV, 2015]

Applications: Image & Video denoising, Classification, Magnetic
resonance imaging (MRI) [SPIE 2015, ICIP 2015].
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Square Transform Learning Formulation1

(P0) min
W ,X

Sparsification Error
︷ ︸︸ ︷

‖WY − X‖
2
F +

Regularizer , v(W )
︷ ︸︸ ︷

λ
(

‖W ‖
2
F − log |detW |

)

s.t. ‖Xi‖0 ≤ s ∀ i

Y = [Y1 |Y2 | ..... |YN ] ∈ R
n×N : matrix of training signals.

X = [X1 |X2 | ..... |XN ] ∈ R
n×N : matrix of sparse codes of Yi .

Sparsification error - measures deviation of data in transform domain
from perfect sparsity.

λ > 0. Regularizer v(W ) prevents trivial solutions and fully controls
condition number of W .

(P0) is limited due to a single W for all the data.

1 [Ravishankar & Bresler ’12]
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Why Union of Transforms?

Natural images typically have diverse features or textures.
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Why Union of Transforms?

Union of transforms: one for each class of textures or features.
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OCTOBOS Learning Formulation

(P1) min
{

Wk ,Xi ,Ck

}

Sparsification Error
︷ ︸︸ ︷

K∑

k=1

∑

i∈Ck

‖WkYi − Xi‖22 +

Regularizer
︷ ︸︸ ︷

K∑

k=1

λk

(

‖Wk‖2F − log |detWk |
)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck}Kk=1 ∈ G

Ck is the set of indices of signals in class k .

G is the set of all possible partitions of [1 : N] into K disjoint subsets.

(P1) jointly learns the union-of-transforms {Wk} and clusters the data Y .

Regularizer necessary to control scaling and conditioning (κ) of transforms.

λk = λ0‖YCk ‖2F , with YCk the matrix of all Yi ∈ Ck , achieves scale
invariance of the solution in (P1).

As λ0 → ∞, κ(Wk) → 1,
∥
∥Wk

∥
∥
2
→ 1/

√
2 ∀ k for solutions in (P1).
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Alternating Minimization Algorithm for (P1)

(P1) min
{

Wk ,Xi ,Ck

}

Sparsification Error
︷ ︸︸ ︷

K∑

k=1

∑

i∈Ck

‖WkYi − Xi‖
2
2 +

Regularizer
︷ ︸︸ ︷

K∑

k=1

λk

(

‖Wk‖
2
F − log |detWk |

)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck}
K
k=1 ∈ G
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Alternating OCTOBOS Learning Algorithm: Step 1

Transform Update: Solves for only the {Wk} in (P1).

min
{Wk}

K∑

k=1

{
∑

i∈Ck

‖Wk Yi − Xi‖
2
2 + λkv(Wk )

}

(1)

Closed-form solution using Singular Value Decomposition (SVD):

Ŵk = 0.5Rk(Σk + (Σ2
k + 2λk I )

1
2 )V T

k L−1
k

, ∀k (2)

I is the identity matrix. λk = λ0

∥
∥YCk

∥
∥2

F
.

YCk
Y T
Ck

+ λk I = LkL
T
k . Lk is a matrix square root.

SVD: L−1
k

YCk
XT
Ck

= VkΣkU
T
k .
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Alternating OCTOBOS Learning Algorithm: Step 2

Sparse Coding & Clustering: Solves for only the {Ck , Xi} in (P1).

min
{Ck}, {Xi}

K∑

k=1

∑

i∈Ck

{

‖Wk Yi − Xi‖
2
2 + λ0 ‖Yi‖

2
2 v(Wk )

}

(3)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck} ∈ G

Exact Clustering: finds the global optimum {Ĉk} in (3) as

{

Ĉk

}

= arg min
{Ck}

K∑

k=1

∑

i∈Ck

Clustering Measure , Mk,i

︷ ︸︸ ︷
{

‖Wk Yi − Hs(Wk Yi )‖
2
2 + λ0 ‖Yi‖

2
2 v(Wk)

}

(4)

For each Yi , the optimal cluster index k̂i = argmin
k

Mk,i .

Exact and Cheap Sparse Coding: X̂i = Hs(WkYi ) ∀i ∈ Ĉk , ∀k.
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Computational Advantages of OCTOBOS

Cost per-iteration for learning OCTOBOS W ∈ RKn×n:

Assume number of training signals N ≫ m = Kn.

Cost of Clustering & Sparse coding Step: O(mnN).

Cost of Transform Update Step: O(n2N).

Cost dominated by clustering.

Model (m, s ∝ n) Square W ∈ Rn×n OCTOBOS W ∈ Rm×n KSVD D ∈ Rn×m

Per-iter. Cost O(n2N) O(n2N) O(n3N)

In practice, OCTOBOS learning converges in few iterations.

OCTOBOS learning is cheaper than dictionary learning by K-SVD2.

2 [Aharon et al. ’06]
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Global Convergence Guarantees for OCTOBOS

(P1) min
{

Wk ,Xi ,Ck

}

Sparsification Error
︷ ︸︸ ︷

k∑

k=1

∑

i∈Ck

‖WkYi − Xi‖22 +

Regularizer
︷ ︸︸ ︷

k∑

k=1

λk

(

‖Wk‖2F − log |detWk |
)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck}Kk=1 ∈ G

The alternating OCTOBOS learning algorithm is globally convergent to the
set of partial minimizers of the objective in (P1).

These partial minimizers are global minimizers w.r.t. {Wk} and {Xi ,Ck},
respectively, and local minimizers w.r.t. {Wk , Xi}.

Under certain (mild) conditions, the algorithm converges to the set of
stationary points of the equivalent objective f (W).

f (W) ,
N∑

i=1

min
k

{

‖WkYi − Hs(WkYi )‖
2
2 + λ0 v(Wk) ‖Yi‖

2
2

}
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Algorithm Insensitive to Initializations
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Visualization of Learned OCTOBOS

The square blocks of a learnt OCTOBOS are NOT similar ⇒ cluster-specific Wk .

OCTOBOS W learned with different initializations appear different.

The W learned with different initializations sparsify equally well.
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Application: Unsupervised Classification

The overlapping image patches are first clustered by OCTOBOS learning.

Each image pixel is then classified by a majority vote among the patches that
cover that pixel.

Input Image K-means OCTOBOS

Input Image K-means OCTOBOS
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Application: Compressed Sensing (CS)

CS enables accurate recovery of images from far fewer
measurements than the number of unknowns

Sparsity of image in transform domain or dictionary

Measurement procedure incoherent with transform

Reconstruction non-linear

Reconstruction problem (NP-hard) -

min
x

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖
2
2 +λ

Regularizer
︷ ︸︸ ︷

‖Ψx‖0 (5)

x ∈ CP : vectorized image, y ∈ Cm : measurements (m < P).

A : fat sensing matrix, Ψ : transform. ℓ0 “norm”counts non-zeros.

CS with non-adaptive regularizer limited to low undersampling in MRI.
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UNITE-BCS: Union of Transforms Blind CS

(P2) min
x,B,{Wk ,Ck}

ν

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖
2
2 +

Sparsification Error
︷ ︸︸ ︷

K∑

k=1

∑

j∈Ck

‖WkRjx − bj‖
2
2 +η2

Sparsity Penalty
︷ ︸︸ ︷

K∑

k=1

∑

j∈Ck

‖bj‖0

s.t. WH
k Wk = I ∀ k , {Ck} ∈ G , ‖x‖2 ≤ C .

Rj ∈ R
n×P extracts patches. Wk ∈ C

n×n is cluster-specific transform.

WkRjx ≈ bj , ∀j ∈ Ck , ∀k with bj ∈ C
n sparse. B , [b1 | b2 | ... | bN ].

(P2) learns a union of unitary transforms, reconstructs x , and clusters the
patches of x , using only the undersampled y .

⇒ model adaptive to underlying image.

‖x‖2 ≤ C is an energy or range constraint. C > 0.
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Block Coordinate Descent (BCD) Algorithm for (P2)

Sparse Coding & Clustering: Solves for only {Ck} & B in (P2).

min
{Ck},{bj}

K∑

k=1

∑

j∈Ck

{

‖WkRjx − bj‖
2
2 + η2 ‖bj‖0

}
(6)

s.t. {Ck} ∈ G

Exact Clustering: finds the global optimum {Ĉk} in (6) as

{

Ĉk

}

= arg min
{Ck}

K∑

k=1

∑

j∈Ck

Clustering Measure , Mk,j

︷ ︸︸ ︷
∥
∥WkRjx − Hη(WkRjx)

∥
∥2

2
+ η2

∥
∥Hη(WkRjx)

∥
∥
0

(7)

For patch Pjx , the optimal cluster index k̂j = argmin
k

Mk,j .

Exact Sparse Coding by Hard-thresholding: b̂j = Hη(WkRjx) ∀j ∈ Ĉk , ∀k.
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BCD Algorithm: Transform Update Step

Transform Update Step solves (P2) for {Wk}. For each k , solve

min
Wk

‖WkXCk
− BCk

‖2F s.t. WH
k Wk = I . (8)

XCk is matrix with columns Rjx for j ∈ Ck . BCk is matrix of
corresponding sparse codes.

Closed-form solution:
Ŵk = VU

H (9)

SVD: XCk
BH
Ck

= UΣVH .
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BCD Algorithm: Image Update Step

Image Update Step solves (P2) for x with other variables fixed.

min
x

ν ‖Ax − y‖
2
2 +

K∑

k=1

∑

j∈Ck

‖WkRjx − bj‖
2
2 s.t. ‖x‖2 ≤ C . (10)

Least squares problem with ℓ2 norm constraint.

Solve Least squares Lagrangian formulation with Normal
Equation:





N∑

j=1

R
T
j Rj + ν A

H
A+ µ̂I



 x =

K∑

k=1

∑

j∈Ck

R
T
j W

H
k bj + ν A

H
y (11)

The optimal multiplier µ̂ ∈ R+ is the smallest real such that
‖x̂‖2 ≤ C . µ̂ and x̂ can be found cheaply in applications such as MRI.
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BCS Convergence Guarantees - Notations

Define the barrier function ϕ(W ) as

ϕ(W ) =

{

0,

+∞,

WHW = I

else

χ(x) is the barrier function corresponding to ‖x‖2 ≤ C .

(P2) can be written in unconstrained form:

h(W ,B, Γ, x) = ν ‖Ax − y‖2
2 +

K
∑

k=1

∑

j∈Ck

{

‖WkRjx − bj‖
2
2
+ η2 ‖bj‖0

}

+

K
∑

k=1

ϕ(Wk ) + χ(x)

OCTOBOS W obtained by stacking the Wk ’s.
Γ : row vector whose entries are the cluster indices of patches.
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Union of Transforms BCS Convergence Guarantees

Theorem 1

For the sequence {W t ,B t , Γt , x t} generated by the BCD Algorithm with
initial (W 0,B0, Γ0, x0), we have

{h (W t ,B t , Γt , x t)} → h∗ = h∗(W 0,B0, Γ0, x0).

{W t ,B t , Γt , x t} is bounded, and all its accumulation points are
equivalent, i.e., they achieve the same value h∗ of the objective.
∥
∥x t − x t−1

∥
∥
2
→ 0 as t → ∞.

Every accumulation point (W ,B, Γ, x) satisfies the following partial
global optimality conditions

x ∈argmin
x̃

h (W ,B, Γ, x̃) (12)

W ∈ argmin
W̃

h
(

W̃ ,B, Γ, x
)

, (B, Γ) ∈ argmin
B̃,Γ̃

h
(

W , B̃ , Γ̃, x
)

(13)
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UNITE-BCS Convergence Guarantees

Theorem 2

Each accumulation point (W ,B, Γ, x) of {W t ,B t , Γt , x t} also satisfies
the following partial local optimality condition for all ∆x ∈ CP , and all
∆B ∈ C

n×N satisfying ‖∆B‖∞ < η/2.

h(W ,B +∆B, Γ, x +∆x) ≥h(W ,B, Γ, x) = h∗ (14)

S. Ravishankar Adaptive Sparse Signal Models
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UNITE-BCS Global Convergence Guarantees

Corollary 1

For each initialization, the iterate sequence in the BCD algorithm
converges to an equivalence class (same objective values) of
accumulation points of the objective that are also partial global and
partial local minimizers.

Corollary 2

The BCD algorithm is globally convergent to (a subset of) the set of
partial minimizers of the objective.
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CS MRI Example - 2.5x Undersampling (K = 3)

Sampling mask Zero-filling (24.9 dB)

UNITE-MRI recon (37.3 dB) Reference
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Convergence Behavior: UTMRI (K = 1) & UNITE-MRI
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UNITE-MRI Clustering with K = 3

UNITE-MRI recon Cluster 1 Cluster 2

Cluster 3 Real part of Imaginary part of
learnt W for cluster 2 learnt W for cluster 2
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UNITE-MRI Clustering with K = 4

Cluster 1 Cluster 2 Cluster 3

Cluster 4 Real part of Imaginary part of
learnt W for cluster 4 learnt W for cluster 4
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Reconstructions - Cartesian 2.5x Undersampling (K = 16)
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3 [Ravishankar & Bresler ’11]
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Example - Cartesian 2.5x Undersampling (K = 16)

Sampling mask UTMRI (42.5 dB) UNITE-MRI (44.3 dB)
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Online Transform Learning
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Why Online Transform Learning?

Batch learning: learning using all the training data simultaneously.

Big data ⇒ large training sets ⇒ batch learning computationally
expensive in time and memory.

Real-time or streaming data applications ⇒ data arrives sequentially,
and must be processed sequentially to limit latency.

Online learning uses sequential model adaptation and signal
reconstruction.

cheap computations and modest memory requirements.
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Online Transform Learning
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Online Transform Learning Formulation

For t = 1, 2, 3, ..., solve

(P3)
{

Ŵt , x̂t

}

= argmin
W , xt

1

t

t∑

j=1

{

‖Wyj − xj‖
2
2 + λjv(W )

}

s.t. ‖xt‖0 ≤ s, xj = x̂j , 1 ≤ j ≤ t − 1.

λj = λ0 ‖yj‖22, with λ0 > 0. v(W ) , ‖W ‖
2
F − log |detW |.

λ0 controls the condition number and scaling of learned Ŵt .

Ŵ−1
t x̂t is an (e.g., denoised) estimate of yt computed efficiently.

For non-stationary data, use forgetting factor ρ ∈ [0, 1], to diminish the

influence of old data.

1

t

t∑

j=1

ρt−j
{

‖Wyj − xj‖
2
2 + λjv(W )

}

(15)
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Mini-Batch Transform Learning

For J = 1, 2, 3, ..., solve

{

ŴJ , X̂J

}

= argmin
W ,XJ

1

JM

J∑

j=1

{

‖WYj − Xj‖
2
F
+ Λjv(W )

}

s.t. ‖xJM−M+i‖0 ≤ s, 1 ≤ i ≤ M . (P4)

YJ = [ yJM−M+1 | yJM−M+2 | ..... | yJM ], with M : mini-batch size.

XJ = [ xJM−M+1 | xJM−M+2 | ..... | xJM ]. Λj = λ0 ‖Yj‖
2
F
.

Mini-batch learning

can provide reductions in operation count over online learning.

increased latency and memory requirements.

Alternative: Sparsity constraints can be replaced with ℓ0 penalties.
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Online Transform Learning Algorithm

Sparse Coding: solve for xt in (P3) with fixed W = Ŵt−1.

min
xt

‖Wyt − xt‖22 s.t. ‖xt‖0 ≤ s (16)

Cheap Solution: x̂t = Hs(Wyt).

Transform Update: solves for W in (P3) with xt = x̂t .

min
W

1

t

t∑

j=1

{

‖Wyj − xj‖22 + λj

(

‖W ‖2
F
− log |detW |

)}

(17)

Ŵt = 0.5Rt

(

Σt +
(

Σ2
t + 2βt I

) 1
2

)

Q
T
t L

−1
t (18)

t−1 ∑t
j=1

(

yj y
T
j + λ0 ‖yj‖

2
2
I
)

= LtL
T
t . Perform rank-1 update.

βt = λ0t
−1 ∑t

j=1 ‖yj‖
2
2. QtΣtR

T
t is full SVD of L−1

t Θt = t−1 ∑t
j=1 L

−1
t yjx

T
j .

L
−1
t Θt ≈ (1 − t−1)L−1

t−1Θt−1 + t−1L
−1
t ytx

T
t ⇒ rank-1 SVD update.

No matrix-matrix products. Approx. error bounded, and cheaply monitored.
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Mini-Batch Transform Learning Algorithm

Sparse Coding: solve for XJ in (P4) with fixed W = ŴJ−1.

min
XJ

‖WYJ − XJ‖2F s.t. ‖xJM−M+i‖0 ≤ s ∀ i . (19)

Cheap Solution: x̂JM−M+i = Hs(WyJM−M+i ) ∀i ∈ {1, ..,M}.

Transform Update: solves for W in (P4) with fixed {Xj}Jj=1.

min
W

1

JM

J∑

j=1

{

‖WYj − Xj‖2F + Λj

(

‖W ‖2
F
− log |detW |

)}

(20)

Closed-form solution involving SVDs.

For M ≪ n, use rank-M updates. For M ≥ O(n), direct SVDs.
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Comparison of Computations, Memory, and Latency

Properties Online Mini-batch Batch
Small M ≪ n Large M

Computations per sample O(n2 log2 n) O(n2 log2 n) O(n2) O(Pn2)

Memory O(n2) O(n2) O(nM) O(nN)

Latency 0 M − 1 M − 1 N − 1

Latency: max. time between arrival of a signal and generation of the output.

P: # batch iterations, N: total samples, M: mini-batch size, n: signal size.

log2 n < P ⇒ online scheme is computationally cheaper than batch.

For big data, online & mini-batch schemes have low memory & latency costs.

Online synthesis learning4 has high computational cost per sample: O(n3).

4 [Mairal et al. ’10]
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Online Learning Convergence Analysis: Notations

The objective in the transform update step of (P3) is

ĝt(W ) =
1

t

t∑

j=1

{

‖Wyj − x̂j‖
2
2 + λ0 ‖yj‖

2
2 v(W )

}

(21)

The empirical objective function is

gt(W ) =
1

t

t∑

j=1

{

‖Wyj − Hs(Wyj )‖
2
2 + λ0 ‖yj‖

2
2 v(W )

}
(22)

This is the objective that is minimized in batch transform learning.

In the online setting, the sparse codes of past signals cannot be
optimally set at future times t.
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Expected Transform Learning Cost

Assumption: yt are i.i.d. random samples from the sphere
Sn = {y ∈ Rn : ‖y‖2 = 1}, assuming absolutely continuous
probability measure p.

We consider the minimization of the expected learning cost:

g(W ) = Ey

[

‖Wy − Hs(Wy)‖
2
2 + λ0 ‖y‖

2
2 v(W )

]

(23)

.
It follows from the Assumption that limt→∞ gt(W ) = g(W ) a.s.

Given a specific training set, it is unnecessary to minimize the batch

objective gt(W ) to high precision, since gt(W ) only approximates g(W ).

Even an inaccurate minimizer of gt(W ) could provide the same, or
better value of g(W ) than a fully optimized one.
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Main Convergence Results

Theorem 3

For the sequence
{

Ŵt

}
generated by our online scheme, we have

(i) As t → ∞, ĝt(Ŵt ), gt(Ŵt ), and g(Ŵt) all converge a.s. to a
common limit, say g∗.

(ii) The sequence
{

Ŵt

}
is bounded. Every accumulation point Ŵ∞ of

{

Ŵt

}
satisfies ∇g(Ŵ∞) = 0 and g(Ŵ∞) = g∗ with probability 1.

(iii) The distance between Ŵt and the set of stationary points of g(W )
converges to 0 a.s.

(iv) ĝt+1(Ŵt+1)− ĝt(Ŵt) and Ŵt+1 − Ŵt both decay as O(1/t).
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Empirical Convergence Behavior
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Mini−batch

Objective Sparsification error ||Ŵt+1 − Ŵt ||F
(M = 320)

{yt} generated as
{
W−1xt

}
with random unitary 20× 20 W , and random

xt with ‖xt‖0 = 3.

Objective converges quickly for both the online and mini-batch schemes.

Sparsification error converges to zero, and κ(W ) ∈ [1.02, 1.04] for the
schemes ⇒ learned a good model.
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Online Video Denoising by 3D Transform Learning

zt is a noisy video frame. ẑt is its denoised version.

Gt is a tensor with m frames formed using a sliding window scheme.

Overlapping 3D patches in the Gt ’s are denoised sequentially using
adaptive mini-batch denoising.

Denoised patches averaged at 3D locations to yield frame estimates.
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Video Denoising by Online Transform Learning

Video σ DCT SK-SVD VBM3D VBM4D VIDOLSAT VIDOLSAT

(n = 512) (n = 768)

Salesman

10 36.9 37.0 37.3 37.1 37.8 38.0

20 33.1 33.2 34.1 33.3 34.0 34.3

50 27.8 28.4 28.3 28.3 29.3 29.7

Miss America

10 39.5 39.7 39.6 39.9 40.3 40.3

20 36.2 37.3 38.0 37.8 38.3 38.4

50 30.6 33.4 34.6 34.3 35.2 35.3

Coastguard

10 34.6 34.8 34.8 35.4 35.7 35.7

20 31.1 31.3 31.7 31.7 32.2 32.3

50 26.6 27.1 26.9 27.1 28.0 28.1

Proposed VIDOLSAT is simulated at two patch sizes: 8× 8× 8

(n = 512), and 8× 8× 12 (n = 768).

VIDOLSAT provides 1.7 dB, 1.2 dB, 0.8 dB, and 0.8 dB better

PSNRs than 3D DCT, sparse K-SVD5, VBM3D6, and VBM4D7.

5 [Rubinstein et al. ’10] 6 [Dabov et al. ’07] 7 [Maggioni et al. ’12]
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Video Denoising Example: Salesman

Noisy frame VIDOLSAT (PSNR = 30.97 dB)
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Conclusions

We introduced several data-driven sparse model adaptation
techniques.

Transform learning methods

are highly efficient and scalable

enjoy good theoretical and empirical convergence behavior

are highly effective in many applications

Highly promising results were obtained using transform learning for
denoising and compressed sensing.

Future work: online blind compressed sensing.

Acknowledgments: Yoram Bresler, Bihan Wen.

Transform learning webpage: http://transformlearning.csl.illinois.edu
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Thank you! Questions??
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