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Recovery from incomplete data: the question

I In many applications, data acquisition is slow, e.g. in MRI, acquire
one Fourier coefficient of the cross-section of interest at a time

I Question: can we recover the cross-section’s image from
undersampled data?

I Yes: if spatially-limited or if exploit sparsity of the image in an
appropriate domain

I In many other applications, data acquisition is fast but cannot see
everything, e.g. in video,

image = background + foreground

I Question: can we recover two image sequences from one?

I Yes: if exploit the low-rank structure of the background
sequence and sparseness of the foreground
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Outline

I Online Sparse Matrix Recovery
(Recursive Recovery of Sparse Vector Sequences)

I brief overview

I Online Sparse + Low-Rank Matrix Recovery
(Online Robust PCA)

I most of this talk

Namrata Vaswani Online Robust PCA 3/52



Online Sparse Matrix Recovery
Online Robust PCA

Sparse recovery / Compressed sensing: Magnetic Resonance Imaging

(a) (b)

(c) (d)

I (a) Shepp-Logan phantom:
256× 256 image

I (b) MR imaging pattern:
256-point DFT along 22 radial
lines

I (c) Inverse-DFT

I (d) Basis Pursuit solution
(uses sparsity: gives exact
recovery!)

Example taken from [Candes,Romberg,Tao,T-IT, Feb 2006]
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Sparse recovery / Compressive sensing [Mallat et al’93], [Feng,Bresler’96], [Gordinsky,Rao’97],

[Chen,Donoho’98], [Candes,Romberg,Tao’05],[Donoho’05]

I Recover a sparse vector x , with support size at most s, from

y := Ax + w

when A is a known fat matrix and ‖w‖2 ≤ ε (small noise).

I Applications: projection imaging - MRI, CT, astronomy, single-pixel
camera

I Solution by convex relaxation: `1 minimization [Chen,Donoho’98]:

min ‖x̃‖1 subject to ‖y − Ax̃‖2 ≤ ε
if δ2s(A) < 0.4, error bounded by Cε [Candes et al’05,’06,’08]

I restricted isometry constant (RIC) δs(A): smallest real # s.t.

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

for all s-sparse vectors x [Candes,Tao,T-IT’05]
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Recursive recovery of sparse seq’s: the problem [Vaswani,ICIP’08]1

I Given measurements

yt := Axt + wt , ‖wt‖2 ≤ ε, t = 0, 1, 2, . . .

I A = HΦ (given): n ×m, n < m
I H: measurement matrix, Φ: sparsity basis matrix
I e.g., in MRI: H = partial Fourier, Φ = inverse wavelet

I yt : measurements (given)
I xt : sparsity basis vector
I Nt : support set of xt
I wt : small noise

I Goal: recursively reconstruct xt from y0, y1, . . . yt ,
I i.e. use only yt and x̂t−1 for recovering xt

I Use slow support change: |Nt \ Nt−1| ≈ |Nt−1 \ Nt | � |Nt |
I also use slow signal value change when valid

1
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
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Recursive recovery of sparse seq’s: Solutions [KF-CS, ICIP’08], [LS-CS,T-SP,Aug10]

Introduced

I Kalman filtered CS (KF-CS) and Least Squares CS (LS-CS)

I first set of recursive algorithms that needed fewer
measurements for accurate recovery than simple `1-min

I able to obtain time-invariant error bounds on LS-CS error
under reasonable assumptions [Vaswani,LS-CS,T-SP,Aug’2010]

I limitation: exact recovery with fewer meas’s not possible

I Modified-CS and Regularized Modified-CS

I achieved exact recovery using fewer measurements (weaker
RIP assumptions) than simple `1-min [Vaswani,Lu,ISIT’09,T-SP,Sept’10]

I obtained time-invariant error bounds in the noisy case under
realistic assumptions [Zhan,Vaswani,ISIT’13,T-IT,March’15]
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Recursive recovery of sparse seq’s: Modified-CS [Modified-CS,ISIT’09,T-SP’10,T-IT’15]

I Idea: support at t − 1, Nt−1, is a good predictor of Nt

I Reformulate: Sparse Recovery with Partial Support Knowledge T
I support(xt) = T ∪∆ \∆e : ∆,∆e unknown

I Modified-CS: tries to find a vector x̃ that is sparsest outside T
among all vectors satisfying the data constraint

min
x̃
‖x̃T c‖1 subject to ‖y − Ax̃‖2 ≤ ε

I Exact recovery in noise-free case if δs+|∆|+|∆e | < 0.4 [Vaswani,Lu,

ISIT’09,T-SP’10]

I For noisy case: time-invariant error bounds under a realistic signal
change model and δs+ksa < 0.4 [Zhan,Vaswani, ISIT’13, T-IT’15]

I Significant advantage over existing work for dynamic MRI

I Kalman-Filtered Modified-CS / Regularized modified-CS: also used
slow signal value change
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Rest of the talk

I This problem:
yt = Axt + wt

where xt is sparse and wt is small noise: ‖wt‖2 ≤ ε.
I Rest of the talk:

yt = Axt + `t

where xt is sparse and `t lies in a low-dimensional subspace
that is either fixed or slowly-changing over time

I no constraint on how large `t can be: the case of (potentially)
large but structured noise

I for this problem, even the case A = I (online robust PCA) is
hard
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Robust Principal Components’ Analysis (PCA): Background

I Many high-dimensional datasets approximately lie in much lower
dimensional subspace

I PCA: estimate the low-dimensional subspace that best approximates
a given dataset

I SVD on data matrix, compute top left singular vectors

I Robust PCA: PCA in presence of outliers; many useful heuristics in
older work, e.g., RSL [De la Torre et al,2003]

I [Candes et al,2009] posed robust PCA as: separate a low-rank matrix L
and a sparse matrix X from

Y := X + L

I outliers occur occasionally; when they occur, their magnitude
can be large: well modeled as sparse vectors/matrices
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Robust PCA: Applications – I

I Robust PCA: separate low-rank L and sparse X from

Y := X + L

or from a subset of entries of (X + L)

I if L or range(L) is the quantity of interest: robust PCA
I if X is quantity of interest: robust sparse recovery

I Video analytics (e.g. for surveillance, tracking, mobile video chat,
occlusion removal,...) [Candes et al,2009]

X = [x1, x2 . . . , xt , . . . xtmax ], L = [`1, `2, . . . `t , . . . `tmax ]

I `t : bg - usually slow changing, global (dense) changes
I xt : fg - sparse, consists of one or more moving objects (technically

xt : (fg-bg) on fg support)
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Robust PCA: Applications – II

I Recommendation systems design [Candes et al’2009]

(robust PCA with missing entries / robust matrix completion)

I `t : ratings of movies by user t
I the matrix L is low-rank: user preferences governed by only a

few factors
I xt : some users may enter completely incorrect ratings due to

laziness or malicious intent or just typos: outliers
I missing entries: a given user will rate only a subset of all the

movies;
I goal: recover the matrix L in order to recommend movies or

other products

I Detecting anomalous connectivity patterns in social networks or in
computer networks

I `t : vector of n/w link “strengths” at time t when no
anomalous behavior
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Robust PCA: Applications – III

I xt : outliers or anomalies on a few links

I functional MRI based brain activity detection or other dynamic MRI
based region-of-interest detection problems

I only a sparse brain region activated in response to stimuli,
everything else: very slow changes
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

A practical provably correct solution: PCP

I [Candes et al,2009; Chandrasekharan et al,2009; Hsu et al,2011] introduced and studied a
convex opt program called PCP:

min
X̃ ,L̃
‖L̃‖∗ + λ‖X̃‖1 s.t. Y = X̃ + L̃

I If (a) left and right singular vectors of L are dense enough; (b)
support of X is generated uniformly at random; (c) rank and
sparsity are bounded, then PCP exactly recovers X and L from
Y := X + L w.h.p. [Candes et al,2009]

I [Chandrasekharan et al,2009; Hsu et al,2011]: similar flavor; replace ‘unif rand
support’ by upper bound on # of nonzeros in any row of X .

I first set of guarantees for a practical robust PCA approach

I Much later work on the batch robust PCA w/ guarantees
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Need for an online method

I Disadvantages of batch methods:

I slower especially for online applications;

I memory intensive;

I do not allow infrequent/slow support change of columns of X
I reason: this can result in X being rank deficient

I Video analytics: have occasionally static or slow moving foreground
objects; often need online solution

I Functional MRI: the activated brain region does not change a lot
from frame to frame

I Network anomaly detection: anomalous behavior continues for a
period of time after begins; need an online solution
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

original ReProCS PCP
(online) (batch)

(a) Background recovery

original ReProCS PCP
(online) (batch)

(b) Foreground recovery

Figure: ReProCS: proposed. Backgnd, t = t0 + 60, 120, 199, 475, 1148.
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Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

“Online” robust PCA: the problem [Qiu,Vaswani,Allerton’10,’11] [Guo,Qiu,Vaswani,T-SP’14] 2

I Given sequentially arriving n-length data vectors yt satisfying

yt := `t , t = 1, 2, . . . , t0

and
yt := xt + `t , t = t0 + 1, t0 + 2, . . . , tmax

I xt ’s are sparse vectors with support sets, Tt , of size at most s;
I `t ’s lie in a slowly-changing low-dimensional subspace of Rn;

I ⇔ `t = Ptat w/ ‖(I − Pt−1Pt−1
′)`t‖2 � ‖`t‖2 (Pt : tall)

I support sets of xt , Tt have at least some changes over time

I left singular vectors of the matrix Lt := [`1, `2, . . . `t ] are dense

I Goal: recursively estimate xt , `t and range(Lt) at all t > t0.

2
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum”, IEEE Trans.SP, Aug 2014
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I Given sequentially arriving n-length data vectors yt satisfying

yt := `t , t = 1, 2, . . . , t0

and
yt := xt + `t , t = t0 + 1, t0 + 2, . . . , tmax

I xt ’s are sparse vectors with support sets, Tt , of size at most s;
I `t ’s lie in a slowly-changing low-dimensional subspace of Rn;
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“Online” robust PCA: the problem [Qiu,Vaswani,Allerton’10,’11] [Guo,Qiu,Vaswani,T-SP’14] 3

I Initial outlier-free seq yt = `t for first t0 frames needed to estimate
the initial subspace Pt0 : easy to obtain in many apps, e.g.,

I in video surveillance, easy to get a short background-only
training sequence before fg objects start appearing

I for fMRI, this corresponds to acquiring a short sequence
without any activation

I alternative: use a batch method (e.g., PCP) for first t0 frames

I Note: extension of all our ideas to the undersampled case
yt = Axt + B`t is easy (relevant to MRI apps)

3
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Related work

Batch robust PCA and performance guarantees

I Older work, e.g. RSL [de la Torre et al,IJCV’03]; PCP and much later work
on provably correct robust PCA solutions

Recursive / incremental / online robust PCA algorithms

I Older work (before PCP): [Li et al, ICIP 2003] iRSL: doesn’t work

I [Qiu,Vaswani, Allerton’10, Allerton’11, T-SP’14]: ReProCS (Recursive Projected CS)

I [Balzano et al, CVPR 2012]: GRASTA

I [Mateos et al, JSTSP 2013]: batch, online; online: not enough info, no code

Online robust PCA performance guarantees: almost no work

I [Qiu,Vaswani,Lois,Hogben, ICASSP’13, ISIT’13, T-IT’14]: partial result;

I [Feng et al,NIPS’13 OR-PCA Stoch Opt]: partial result and only asymptotic

I [Lois, Vaswani,ICASSP’15,arXiv:1409.3959]: complete correctness result
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Some definitions for rest of the talk

I P is a basis matrix ⇔ P ′P = I

I Estimate P ⇔ estimate range(P): subspace spanned by col’s of P

I P̂ is an accurate estimate of P ⇔ SE(P̂,P) := ‖(I − P̂P̂ ′)P‖2 � 1
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ReProCS algorithm [Qiu,Vaswani,Allerton’10,Allerton’11],[Guo,Qiu,Vaswani,T-SP’14]4

Recall: for t > t0, yt := xt + `t , `t = Ptat , Pt : tall n × r basis matrix

Initialize: compute P̂0 = top left singular vectors of [`1, `2, . . . `t0 ].

For t > t0, do

I Projection: compute ỹt := Φtyt , where Φt := I − P̂t−1P̂
′
t−1

I then ỹt = Φtxt + βt , βt := Φt`t is small “noise” because of
slow subspace change

I Noisy Sparse Recovery: `1 min + support estimate + LS: get x̂t
I denseness of Pt ’s ⇒ sparse xt recoverable from ỹt

I Recover `t : compute ˆ̀
t = yt − x̂t

I Subspace update: update P̂t every α frames by projection-PCA

4
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum”, IEEE Trans.SP, Aug 2014
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I Projection: compute ỹt := Φtyt , where Φt := I − P̂t−1P̂
′
t−1
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I Recover `t : compute ˆ̀
t = yt − x̂t

I Subspace update: update P̂t every α frames by projection-PCA

4
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum”, IEEE Trans.SP, Aug 2014

Namrata Vaswani Online Robust PCA 21/52



Online Sparse Matrix Recovery
Online Robust PCA

Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

ReProCS algorithm [Qiu,Vaswani,Allerton’10,Allerton’11],[Guo,Qiu,Vaswani,T-SP’14]4

Recall: for t > t0, yt := xt + `t , `t = Ptat , Pt : tall n × r basis matrix

Initialize: compute P̂0 = top left singular vectors of [`1, `2, . . . `t0 ].

For t > t0, do
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Why ReProCS works [Qiu,Vaswani,Lois,Hogben,T-IT,2014] 5

I Slow subspace change: noise βt seen by sparse recovery step is small

I Denseness of columns of Pt ⇒ RIC of Φt = I − P̂t−1P̂
′
t−1 is small

I denseness assump: (2s) maxt maxi ‖(Pt−1)i,:‖2
2 ≤ 0.09

I easy to show [Qiu,Vaswani,Lois,Hogben,T-IT,2014]:

δ2s(Φt) = max
|T |≤2s

‖IT ′P̂t−1‖2
2 ≤ (2s) max

i
‖(P̂t−1)i,:‖2

2 ≤ 0.09+0.05

(here: 0.05 is due to the small error b/w P̂t−1 and Pt−1)

I Above two facts + any result for `1 min: xt is accurately recovered;
and hence `t = yt − xt is accurately recovered

I Most of the work: show accurate subspace recovery P̂t ≈ Pt

I std PCA results not applicable: et := ˆ̀
t − `t = xt − x̂t

correlated w/ `t

5
C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large

but Structured Noise, IEEE Trans. IT, 2014
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ReProCS algorithm: why std PCA not applicable?

I let et := `t − ˆ̀
t = x̂t − xt

I perturbation seen by standard PCA,

1

α

∑

t

ˆ̀
t
ˆ̀′
t −

1

α

∑

t

`t`
′
t =

1

α

∑

t

`te
′
t +

(
1

α

∑

t

`te
′
t

)′
+

1

α

∑

t

ete
′
t

I when et and `t uncorrelated & et zero mean: first two terms are
close to zero w.h.p.

I in ReProCS, et is correlated with `t ; thus first two terms are the
dominant ones; if condition # of 1

α

∑
t `t`

′
t large: perturbation not

be small compared to its min eigenvalue

I by sin θ theorem [Davis,Kahan, 1970],

‖(I − P̂P̂ ′)P‖2 .
‖perturbation‖2

λmin( 1
α

∑
t `t`

′
t)− ‖perturbation‖2

(P: eigenvec’s with nonzero eigenval’s of 1
α

∑
t `t`

′
t)
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ReProCS correctness result [Lois,Vaswani, ICASSP 2015],[Qiu,Vaswani,Lois,Hogben,T-IT’14]6

For most videos (i.e. w.p. at least 1− n−10),

I the region occupied by the foreground objects (support of xt) is
exactly recovered at all times, and

I foreground and background images are accurately recovered at all
times (‖xt − x̂t‖2 = ‖`t − ˆ̀

t‖2 ≤ b)

I the background subspace recovery error decays to a small value
within a short delay of a subspace change time,

if

6
B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, ICASSP 2015.

C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but
Structured Noise, IEEE Trans. IT, 2014.
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I an initial background-only training sequence is available (to
get an accurate initial subspace estimate)

I the background images change slowly (`t lies in a slowly
changing low-dimensional subspace)

I background changes (w.r.t. a mean background image) are
dense,

I there is some motion of the foreground objects at least once
every so often (there is some change in the support of xt ’s)

Details follow in the next few slides . . .
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ReProCS correctness result: Support change - examples

1. (random motion) all support sets mutually disjoint

I this satisfies our model as long as s ∈ O( n
log n )

2. (infrequent motion) a 1D object of length s that moves at least
once every β frames; and, when it moves, it moves down by at least
s/% pixels

I and by no more than b2s indices
I this satisfies our model as long as s ∈ O( n

log n ) and

%2β ≤ 0.01α

3. (slow motion) an object of length s moves down by at least one
pixel in every frame

I this satisfies our model as long as s ∈ O(log n)
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ReProCS correctness result: Support change - examples

��+(�–1)α ��+�α–1

(a) disjoint supports

(�–1)α �α–1

≤ �/200

(b) infrequent motion (c) slow moving

Figure: In any of these we could have randomly selected pixels (need not
be a block) at a given time and also random ordering across time
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ReProCS correctness result: Subspace change model

`t ’s are zero mean, bounded and mutually independent r.v.’s with
covariance matrix Σt that is low-rank and “slowly changing”

I Σt
EVD
= PtΛtP

′
t where Pt = P(j) for t ∈ [tj , tj+1 − 1], j = 1, 2, . . . J

I P(j) is a tall n × rj basis matrix that changes as

P(j) = [P(j−1) \ Pj,old, Pj,new]

I “slow change”: λ+
new(d) := maxt∈[tj ,tj+d ] λmax(Λt,new) is small and

tj+1 − tj is large

Define

I c := maxj rank(Pj,new), γnew(d) := maxt∈[tj ,tj+d ]‖at,new‖∞
I r := r0 + Jc , λ+ := maxt λmax(Λt), γ := maxt ‖at‖∞
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Theorem
Consider ReProCS. Pick a ζ ≤ min

(
10−4λ−

0

(r0+Jc)2λ+ ,
1

(r0+Jc)3γ2

)
. If ReProCS

algorithm parameters α,K , ξ, ω are set appropriately, and if

1. initial subspace accurately estimated: ‖(I − P̂0P̂
′
0)P0‖2 ≤ r0ζ

2. “slow subspace change” holds:

I projection of `t along new direc’s small for first d frames after
tj : for a d ≥ (K + 2)α, λ+

new(d) ≤ 3λ−0 and
γnew(d) ≤ 0.05xmin

I and delay between change times is large: (tj+1 − tj) > d ,

3. subspace basis matrices are dense enough:

(2s) max
i
‖(Pj,new)i,:‖2

2 ≤ 0.0004 and (2s) max
i
‖(PJ)i,:‖2 ≤ 0.09

4. support of xt has size smaller than s and changes enough,

I e.g., moves down by at least s/10 pixels at least once every
α/500 frames,
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then, with probability at least 1− n−10,

1. support(xt) is exactly recovered at all times,

2. SEt := ‖(I − P̂t P̂
′
t)Pt‖2 reduces to (r + c)ζ within (K + 2)α frames

after tj ,

3. ‖`t − ˆ̀
t‖2 = ‖xt − x̂t‖2 ≤ b � ‖xt‖2

Notice: no bound needed on λ+ or on γ: the result allows large but
structured `t

Details:

I B. Lois and N. Vaswani, Online Robust PCA and Online Matrix Completion, arXiv:1503.03525 [cs.IT].

I B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, ICASSP 2015.

I C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large
but Structured Noise, IEEE Trans. IT, 2014.
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Discussion: Contributions

I To our knowledge, first correctness result for online robust PCA

I or online sparse + low-rank recovery / online sparse recovery
in large but structured noise

I online algorithm: faster; less storage needed: only O(n log n)
instead of O(ntmax)

I Allows significantly more correlated support change than PCP

I ReProCS allows the fraction of nonzeros per row of X to be
O(1);

I PCP only allows this to be O( 1
rank(L) ) [Hsu et al’2011] or needs

uniformly random support of X [Candes et al]

I New proof techniques needed: useful for various other problems

I almost all existing robust PCA results are for batch approaches
I previous PCA results require et := ˆ̀

t − `t uncorrelated w/ `t
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Discussion: Limitations

I Needs knowledge of bounds on γnew and c to set algorithm
parameters

I Needs a tighter bound on rank and sparsity compared to PCP
I let smat := |support(X )| and rmat := rank(L)
I we allow smat ∈ O( ntmax

log n ) and rmat ∈ O(log n)
I PCP allows smat ∈ O(ntmax) and rmat ∈ O( n

log2 n
)

I result for ReProCS-deletion relaxes above (ongoing)

I Needs
I initial subspace knowledge and slow subspace change

I both are usually practically valid
I zero-mean & mutually independent assump. on `t ’s over t

I models independent random variations around a fixed bg mean
I can replace it by a more practical AR model (ongoing)

I Only ensures accurate recovery of xt , `t , not exact
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Some Generalizations

I Direct application to online matrix completion

I Easy extension to yt = Axt + B`t

I Relax independence assumption on `t ’s, replace by AR model
(ongoing) – almost exactly same result

I Result for ReProCS-deletion – ReProCS that also deletes direc’s
(ongoing):

I needs an extra clustering assumption on the eigenvalues for a
certain period of time after subspace change has stabilized;

I but relaxes denseness requirement and so allows rmat ∈ O(n)
instead of rmat ∈ O(log n)
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Application to online matrix completion

I Can provide a provably accurate solution for online matrix
completion; that also allows highly correlated set of unknown entries

I but requires slow subspace change and initial subspace
knowledge

I Low-rank matrix completion is a special case w/ known
Tt = support(xt)

I in MC: Tt is the set of unknown entries of `t at time t

I ReProCS for online matrix completion:

I Assume: accurate initial subspace knowledge, P̂0.
I Compute Φt := (I − P̂t−1P̂

′
t−1)

I Given Tt , get an estimate of `t as

ˆ̀
t = (I − ITt (Φt)Tt

†Φt)yt

I Use projection-PCA as before to update the subspace estimate
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ReProCS algorithm - recap [Qiu,Vaswani,Allerton’10,Allerton’11]7

Initialize: given P̂0 with range(P̂0) ≈ range([`1, `2, . . . `t0 ])
For t > t0,

I Projection: compute ỹt := Φtyt , where Φt := I − P̂t−1P̂
′
t−1

I then ỹt = Φtxt + βt , βt := Φt`t is small “noise”

I Noisy Sparse Recovery: `1 min + support estimate + LS: get x̂t

I x̂t,cs = arg minx ‖x‖1 s.t. ‖ỹt − Φtx‖2 ≤ ξ
I T̂t = {i : |(x̂t,cs)i | > ω}
I x̂t = IT̂t (AT̂t

′AT̂t )
−1AT̂t

′yt

I Get ˆ̀
t = yt − x̂t

I Subspace update: update P̂t every α frames by projection-PCA

7
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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ReProCS algorithm: projection PCA

Recall tj+1 − tj > (K + 2)α; tj : subspace change times;
Pt = P(j) = [P(j−1),Pj,new] for all tj ≤ t < tj+1

tj t̂j t̂j + α t̂j + 2α

. . .

t̂j + kα t̂j + (k + 1)α

. . .

t̂j +Kα tj + d tj+1

P̂t = P̂(j),∗
P̂t,new = [.] P̂t =

[
P̂(j),∗ P̂(j),new,1

]
P̂t =

[
P̂(j),∗ P̂(j),new,k

]

‖at,new‖∞ ≤ γnew

P̂t =
[
P̂(j),∗ P̂(j),new,K

]
= P̂(j+1),∗

let P̂j,∗ := P̂j−1 be an (accurate) estimate of the previous subspace

at t = t̂j + kα, k = 1, 2, . . .K ,

I P̂j,new,k ← SVD
(

(I − P̂j,∗P̂
′
j,∗)[ˆ̀̂tj+(k−1)α+1, . . . ˆ̀̂

tj+kα], thresh
)

I update P̂t = [P̂j,∗, P̂j,new,k ]
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Proof idea: Why projection PCA works?

I Before the first proj-PCA, i.e. for t ∈ [tj , t̂j + α],

I Pt = [P∗,Pnew], P̂t−1 = [P̂∗] ⇒ βt (noise seen by sparse rec
step) and hence et = x̂t − xt = `t − ˆ̀

t is largest

I et still not too large due to slow subspace change; and et is
sparse and supported on Tt

I at t = t̂j + α, get P̂new,1: estimate is good because of above:

SE(Pnew, P̂new,1) := ‖(I − P̂new,1P̂new,1
′)Pnew‖2 < 0.6

I For t ∈ [t̂j + α + 1, t̂j + 2α],

I Pt = [P∗,Pnew], P̂t−1 = [P̂∗, P̂new,1] ⇒ βt and hence et
smaller; and et is sparse and supported on Tt

I at t = t̂j + 2α, get P̂new,2; estimate better because of above

I Continuing this way, show SE(Pnew, P̂new,k) < 0.6k + 0.4cζ; pick K

so SE(Pnew, P̂new,K ) < cζ
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Proof Outline: k-th projection-PCA interval

Conditioned on accurate recovery so far,

I slow subspace change, denseness assumption, appropriate support
threshold and LS ensure that et := xt − x̂t = ˆ̀

t − `t satisfies

et = ITt [ΦTt
′ΦTt ]

−1ITt
′Φ`t where Φ := I − P̂t−1P̂t−1

′

and
‖[ΦTt ′ΦTt ]−1‖2 ≤ 1.2

I by sin θ theorem [Davis,Kahan,1970],

SE(P̂new,k ,Pnew) .
‖perturbation‖2

λ−new − ‖perturbation‖2

‖perturbation‖2 . 2
∥∥ 1

α

∑

t

(I − P̂∗P̂∗
′)`te

′
t

∥∥
2

+
∥∥ 1

α

∑

t

ete
′
t

∥∥
2

I use matrix Hoeffding ineq [Tropp,2012] to bound these terms w.h.p.
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Proof Outline: k-th projection-PCA interval – 2

Conditioned on accurate recovery so far,

I the dominant perturbation term

dom := E


 1

α

t̂j+kα∑

t=t̂j+(k−1)α

(I − P̂∗P̂∗
′)`te

′
t


 ≈ 1

α

∑

t

AtB
′
t

where At := PnewΛt,newP
′
new and Bt := ITt [ΦTt

′ΦTt ]
−1ITt

′

I use slow subspace change to get

∥∥ 1

α

∑

t

AtA
′
t

∥∥
2
≤ max

t
‖At‖2

2 ≤ λ+
new(d)2 ≤ 9λ−0

2

I use model on Tt to show that
∥∥ 1

α

∑

t

BtB
′
t

∥∥
2

=
∥∥ 1

α

∑

t

ITt [ΦTt
′ΦTt ]

−2ITt
′∥∥

2
≤ 1

α
1.22%2β ≤ 0.02

I use Cauchy-Schwartz to get ‖dom‖2 .
√

0.02 · 3λ−0
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Proof Outline: Overall idea

I Define subspace error, SE(P, P̂) := ‖(I − P̂P̂ ′)P‖2.

I Start with SE(Pj−1, P̂j−1) ≤ rj−1ζ � 1 at t = tj − 1.

1. First show that tj ≤ t̂j ≤ tj + 2α

2. Analyze projected sparse recovery for t ∈ [t̂j , t̂j + α)

3. Analyze proj-PCA at t = t̂j + α : SE(Pj,new, P̂j,new,1) ≤ 0.6

4. Repeat for each of the K projection-PCA intervals: show that

SE(Pj,new, P̂j,new,k) ≤ 0.6k + 0.4cζ

5. Pick K s.t. 0.6K + 0.4cζ ≤ cζ. Set P̂j = [P̂(j−1), P̂j,new,K ]

I Thus, at t = t̂j + Kα− 1,

SE(Pj , P̂j) ≤ SE(Pj−1, P̂j−1)+SE(Pj,new, P̂j,new,K ) ≤ rj−1ζ+cζ = rjζ

I tj+1 − tj > (K + 2)α implies SE(Pj , P̂j) ≤ rjζ at t = tj+1 − 1
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Experiments [Guo,Qiu,Vaswani,TSP’14]8

1. Real background simulated foreground: background of moving lake
water video with a simulated moving rectangular object overlaid on
it; object intensity similar to background intensity and object
moving slowly (making it a difficult seq)

2. Real videos:
http://www.ece.iastate.edu/~hanguo/PracReProCS.html

http://www.ece.iastate.edu/~chenlu/ReProCS/ReProCS.htm

8
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal

Sequences From Their Sum”, IEEE Trans. SP, Aug 2014
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Figure: Recovery error (Monte Carlo over 100 realiz’s). Black: batch
methods, Red: online methods, Red Circles: ReProCS
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Figure: Online: ReProCS (proposed), GRASTA; Batch: PCP, RSL, MG.
Frames t = ttrain + 60, 120, 199, 475, 1148Namrata Vaswani Online Robust PCA 43/52
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Figure: Foreground layer recovery at t = ttrain + 30, 80, 140.
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Figure: Foreground layer recovery at t = ttrain + 30, 80, 140.
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Figure: Foreground layer recovery at t = ttrain + 35, 500, 1300.
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Figure: Background layer recovery at t = ttrain + 35, 500, 1300.
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Algorithm parameters

Recall that ζ ≤ min( 10−4

(r0+Jc)2f ,
1

(r0+Jc)3γ2
∗

).

I ξ =
√
cγnew +

√
ζ(
√
r0 + Jc +

√
c);

I ω satisfies 7ξ ≤ ω ≤ xmin − 7ξ;

I K =
⌈

log(0.16cζ)
log(0.4)

⌉
;

I α = C (log(6KJ) + 11 log(n)), C ≥ Cadd := 202 · 8 · 962 (1.2ξ)4

(cζλ−)2

I If we assume that min and max eigenvalues are seen in the training
data, then can estimate λ−, λ+, γ∗ from training data
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Summary

I To the best of our knowledge, this is the first correctness result for
online sparse + low-rank recovery

I equivalently also for online robust PCA / recursive sparse
recovery in large but structured noise

I Advantages

I online algorithm: faster; less storage needed; removes a key
limitation of PCP: allows more correlated support change

I New proof techniques needed to obtain our results

I almost all existing robust PCA results are for batch approaches
I previous finite sample PCA results are not useful: assume

et := ˆ̀
t − `t is uncorrelated with `t
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Ongoing and future work

I A key limitation of ReProCS: does not use the fact that
βt = (I − P̂t−1P̂t−1

′)`t approx lies in a c dimensional subspace
I the only way to use it is a piecewise batch approach:

modified-PCP [Zhan,Vaswani,ISIT’14,T-SP’15]

min
L,X
‖(I − P̂j−1P̂j−1

′)L‖∗ + λ‖X‖1 s.t. Y = L + X

I advantage: weaker rank-sparsity product assumption;
I disadvantage: does not handle correlated support change as

well as ReProCS

I Applications to understanding user preferences for recommendation
system design

I Online robust PCA from moving sensors’ data, e.g. moving cameras

I Proof techniques applicable to more general problems involving
“correlated-PCA” – correlated data and noise vectors
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