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Data in all shapes and sizes!
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Sample statistics from Youtube
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Several challenges...

Access needs to be reliable.

Indeed, server failure is the norm rather than the exception. (Source:
hadoop.apache.org)

System needs to be efficient.

Failure recovery must be seamless and be inexpensive (bandwidth,
time, energy etc.).

Host of other issues such as security, privacy etc.

Not discussed in this talk...
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Replication vs. coding
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A3 
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A3 

Replication 

A1 

A2 

A3 

A1 + A2+ A3 

A1 + 2*A2 + 4*A3 

A1 + 3*A2 + 9*A3 

Coding 
(operations over finite field) 

Observation

Both systems have same redundancy, but coded solution can recover from
any three node failure event.
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Dealing with failure in replication based systems
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Repair in replication based systems

A1 

A2 

A3 
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A3 

A3 

Replication 
based  
system 

File 

New node 

Observation

Repair simply by downloading from the existing copy!
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Repair in coded systems

A1 

A2 

A3 

A1 

A2 

A3 

A1 + A2+ A3 

A1 + 2*A2 + 4*A3 

A1 + 3*A2 + 9*A3 

Coded 
System 

File 

Packet A1 cannot be recovered
unless the file (A1,A2,A3) is
recovered.

This requires connecting to
three nodes and downloading
one packet from each of them.
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Can we do better - EVENODD Example [Blaum et al. ’95]

A1 

A2 

B1 

B2 

A1 + B1 

A2 + B2 

A2+B1 

A1+A2+B2 

Observation

(n = 4, k = 2) code. File consists of four packets (A1,A2,A3,A4). File
can be reconstructed from any two nodes. Resilient to two failures.
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Can we do better - EVENODD Example

A1 

A2 

B1 

B2 

A1 + B1 

A2 + B2 

A2+B1 

A1+A2+B2 

B2 A2 + B2 A1+A2+B2 

A1 

A2 Download 3 packets vs. 4 in naïve strategy!  
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Different notions of repair efficiency

Repair bandwidth: Attempts to minimize the amount of data
downloaded for reconstructing the failed node.

Local repair: Attempts to minimize the number of nodes contacted
for recovering the node.

There are probably other metrics as well in practice, but these appear
to be tractable for code design.
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(n, k , d)- Distributed storage system [Dimakis et al. 10]

V1 

V2 

V3 

Vn-1 

Vn 

Storage capacity = α  

Data collector 

File reconstruction by 
contacting any k nodes 

File of size M packets or symbols stored on n nodes.
Each node stores α symbols.
Any user can reconstruct the file by contacting any k nodes. (MDS
property)
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(n, k , d)- Distributed storage system [Dimakis et al. 10]

V1 

V2 

V3 

Vn-1 

Vn 

Replacement 
node 

Node regeneration 
by contacting any 
d surviving nodes 

A failed node can be reconstructed by contacting any d (d ≥ k)
surviving nodes and downloading β packets from each.

d - repair degree, β - normalized repair bandwidth.

Storage capacity vs. repair bandwidth tradeoff was characterized for
the case of functional repair.
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(n, k , d)- Distributed storage system with exact repair

Exact copy of the failed node needs to be produced.

Minimum storage regenerating (MSR) point: Store exactly M/k
packets per node, i.e., storage capacity of node is minimum.

Constructions from [Cadambe et al. 2013 & others].

Minimum bandwidth regenerating (MBR) point: Exactly α packets
are downloaded for node regeneration. Equals storage capacity of a
node.

Constructions from [Rashmi et al. 2011 & others].

We focus on MBR constructions in this talk.
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Easy repair & reliable distributed storage systems

Advantage of replication based systems is easy reconstruction;
drawback is storage inefficiency.

Advantage of coded systems is optimum storage vs. repair bandwidth
tradeoff; drawback is complicated reconstruction.

This work - attempt to combine best of both worlds ...
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Systems with exact and uncoded repair [El Rouayheb and

Ramchandran ’10]

Exact repair constructions typically use coding across the source
symbols.

Read-write bandwidth of machines is often a bottleneck in system
operation.
Coding across potentially large (≈ GB) packets can be memory
intensive.
Decoding coded packets can cause an increased repair time [Jiekak et
al. ’12].

Definition (Exact and uncoded repair)

• Exact regeneration by simply downloading symbols from the surviving
nodes.
• Operate at the MBR point.
• Table-based repair - new node contacts a specific set of surviving nodes.
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System Architecture

𝑥1, … , 𝑥𝑀 
MDS Code 

Node 1 

Node 2 

Node 3 

Node 𝑛 

𝑥1, … , 𝑥θ 

Fractional repetition code 

Outer MDS code.

Inner fractional repetition (FR) code - specifies placement of symbols
on storage nodes.

File reconstruction if enough symbols are obtained from any k nodes.
Failure recovery depends on FR code properties.
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System example - complete graph on 5 nodes, d ≥ k

V1

V2

V3

V4
V5

File (x1, . . . , x9) ∈ F9
q, M = 9.

Use (10, 9) MDS code to get
coded symbols (y1, . . . , y10).

Number of storage nodes n = 5,
number of symbols θ = 10.

Label edges of the complete
graph.

Storage nodes store incident
symbols.
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System example - complete graph on 5 nodes, d ≥ k

V1 

V2 

V3 

V4 
V5 
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3 
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6 7 

9 
8 
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System example - complete graph on 5 nodes, d ≥ k
Analyzing file size

n = 5 nodes, θ = 10 symbols.

Storage nodes are 4-sized subsets.
Using inclusion-exclusion principle

|A1 ∪ A2 ∪ A3| =
∑
i

|Ai | −
∑
i<j

|Ai ∩ Aj |+ | ∩i Ai |

= 3× 4−
(

3

2

)
+ 0 = 9.

Thus, k = 3.

Repair degree d = 4.
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Failure analysis

V1

V2

V3

V4
V5

Suppose node V1 fails.
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Failure analysis

V1

V2

V3

V4
V5

Suppose node V1 fails.

One symbol from all the other
nodes is needed for recovery.

Need to contact at least k
nodes.
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FR codes from combinatorial designs - Fano plane

7 

5 

2 1 

3 6 

4 

File (x1, . . . , x6) ∈ F6
q, M = 6.

Use (7, 6) MDS code to get
coded symbols (y1, . . . , y7).

Number of storage nodes n = 7.

Nodes correspond to lines in
Fano plane.
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FR codes from combinatorial designs - Fano plane
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FR codes from combinatorial designs - Fano plane
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5 6 

4 

2 1 
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FR code from Fano plane
Analyzing file size

Nodes are 3-sized subsets. Using
inclusion-exclusion principle

|A1 ∪ A2 ∪ A3| =
∑
i

|Ai | −
∑
i<j

|Ai ∩ Aj |+ | ∩i Ai |

Depending on choice of
Ai , i = 1, . . . , 3, three-way
intersection can either be zero or 1.
Minimum value is 3× 3−

(3
2

)
= 6.

Hence, k = 3.

Failure recovery by contacting
d = 3 nodes.
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Key questions in FR code design

Can we construct FR codes that are flexible in the number of failures
that they tolerate?

Need flexible combinatorial designs: formalized in our work by
resolvability.

For a given FR code, can we determine the maximum file size that
can be supported?

Hard problem for a general combinatorial design. Need to find the
minimum number of symbols covered over all k-sized subsets of the
storage nodes; inclusion-exclusion analysis may not always be possible
(though bounds can be obtained).
FR codes with the same parameters (n, k, d , θ, α) can have different
file sizes.
We determine file size for our constructions for certain parameter
ranges.
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Key questions in FR code design

How to calculate system metrics such as minimum distance?

Definition

The minimum distance of a DSS denoted dmin is defined to be the size of
the smallest subset of storage nodes whose failure guarantees that the file
is not recoverable from the surviving nodes under any possible recovery
mechanism.
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Contributions of our work - I [Olmez & R. 2012]

Construct a large class of codes from resolvable designs where failure
resilience of system can be varied in a simple manner (Prior
constructions typically lack this flexibility).

Simple implementation of repair table.

Construct FR codes that cannot be constructed using Steiner systems

Answers an open question raised in [El Rouayheb-Ramchandran ‘10].

Determine the maximum supported file size for several parameter
ranges.

Prior work mostly provides lower bounds.
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Example of a resolvable FR with ρ = 2 - Row-Column
construction

A =
1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9
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Example of Parallel Classes

A =
1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

Parallel 
class 1

Parallel 
class 2
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Resolvable fractional repetition code

Definition

Let C = (Ω,V ) where V = {V1, . . . ,Vn} be a FR code. A subset P ⊂ V
is said to be a parallel class if

Vi ∈ P and Vj ∈ P with i 6= j we have Vi ∩ Vj = ∅, and

∪{j :Vj∈P}Vj = Ω.

A partition of V into r parallel classes is called a resolution.

If there exists at least one resolution then the code is called a
resolvable fractional repetition code.
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Example construction from 2-D subspaces of F3
3

There are thirteen two-dimensional subspaces of F3
3 which are the solutions

to homogeneous linear equations over F3 in three variables.

Equation: x1 = 0

Subspace: {000, 001, 002, 010, 020, 011, 012, 021, 022}
Equation: x1 + 2x2 + 2x3 = 0

Subspace: {000, 012, 021, 110, 101, 122, 220, 202, 211}
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The other blocks are additive cosets of these 13 representatives. For
example,

B1 = {000, 001, 002, 010, 020, 011, 012, 021, 022}
B2 = {100, 101, 102, 110, 120, 111, 112, 121, 122}
B3 = {200, 201, 202, 210, 220, 211, 212, 221, 222}
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Observations

P1

P2

Pm

{B1,B2,B3} covers 27 symbols
- is a parallel class!

There are a total of 13 parallel
classes.

Two nodes from different
parallel classes have exactly 3
symbols in common.

Each symbol is repeated ρ = 13
times.
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Observations

P1

P2

Pm

Failure resilience can be varied
from 1 to 12 failures! -
Significant flexibility as
compared to Steiner systems
considered in [El

Rouayheb-Ramchandran ‘10].

Simply choose an appropriate
number of parallel classes.

For failure recovery simply
contact the intact parallel class.
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General Construction [Olmez & R. 2012]

Construction

Given an affine resolvable design with parameters

(n, θ, α, ρ) =

(
qm+1−1
q−1 , qm, qm−1, q

m−1
q−1

)
with blocks B1,B2, · · · ,Bn, an

FR code C can be obtained by taking C = {B1,B2, · · · ,Bn}.

Corollary

The above construction yields an FR code with β =
α2

θ
.

Ability to obtain codes with higher normalized repair bandwidth β.
These parameters cannot be obtained by trivially treating each
symbol in a smaller code as consisting of a larger number of symbols.
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Implications of result for q = 4,m = 5, δ = 4,

Obtain a FR code with θ = 1024 symbols, storage capacity α = 256
symbols, normalized repair bandwidth β = 64.

Failure resilience can be varied from 1 to 340!

Prior constructions lack this flexibility.
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File size analysis [Olmez & R. 2012]

Theorem

For q > m and m ≥ k, we can choose the parallel classes such that the file

size M = qm
(

1−
(

1− 1
q

)k)
.

File size analysis for FR codes is challenging as one needs to compute
the minimum cardinality of the union of all k-sized storage nodes.

However, careful analysis of the algebraic properties of the design can
often help.
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Constructions from mutually orthogonal Latin squares
(MOLS) [Olmez & R. 2012]

A =

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

L1 =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

L2 =

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

L1 and L2 are mutually
orthogonal.

Choose blocks as elements of A
corresponding to locations in Li .

PL1 = {{1, 6, 11, 16}, {2, 5, 12, 15},
{3, 8, 9, 14}, {4, 7, 10, 13}}

Forms a parallel class.
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P rows = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

Pcols = {{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}

PL1 = {{1, 6, 11, 16}, {2, 5, 12, 15}, {3, 8, 9, 14}, {4, 7, 10, 13}}

PL2 = {{1, 7, 12, 14}, {2, 8, 11, 13}, {3, 5, 10, 16}, {4, 6, 9, 15}}
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For N = ps , we can construct N − 1 MOLS of size N × N.

If N 6= 2, 6, constructions of two MOLS are known
[Bose-Shrikhande-Parker ’60].
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Implications of result

We can construct a FR code starting with two MOLS of order 10
using [Bose-Shrikhande-Parker ’60].

However, Steiner system with storage capacity α = 10 and number of
symbols θ = 100 does not exist.

Equivalent to the existence of a projective plane of order 10 which is
known not to exist [Lam et al. ’89].
Answers open question posed in [El Rouayheb-Ramchandran ‘10]
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Local Repair Example, d < k

1

3

2
5

6

4

7

8

9

File (x1, . . . , x5) ∈ F9
q, M = 5.

Use (9, 5) MDS code to get
coded symbols (y1, . . . , y9).

Number of storage nodes n = 9.

Nodes store incident edge labels.

Aditya Ramamoorthy Iowa State University November 20, 2014 48 / 58



Local Repair Example, d < k

1

3

2
5

6

4

7

8

9

Failure recovery by contacting
surviving nodes in the same
column, d = 2.

Any four nodes cover M = 5
symbols, hence k = 4.

Repair degree d < k ...

Notion of local repair [Gopalan
et al. ’12, Papailopolous et al.
’13, Oggier et al. ’13]
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Contributions of our work - II [Olmez & R. 2013]

Constructions of locally recoverable FR codes.

Local recovery from single failure - from high girth graphs.
Local recovery from multiple failures - Collection of local FR codes.
Global code inherits properties of the local one.

Derive minimum distance bound for local, exact and uncoded repair.
Our codes meet this bound for specific parameters.
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Locally Recoverable FR codes from high-girth graphs [Olmez

& R. 2013]

Local recovery from single failure.
An (s, g)-graph, denoted Γ: vertex degree s, girth g .

(i) Index the edges from 1 to ns
2 .

(ii) Each vertex ≡ storage node; stores the symbols incident on it.
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Petersen Graph - degree 3, girth 5

1B2

1A5

4E5 3D4

2C3

6B7

8A9 9C10

7D86E10

Parameters n = 10, k = 5, α =
3, ρ = 2, d = 3 and M = 10.

Can be shown that construction
meets the minimum distance
bound.

dmin ≤ n −
⌈
M
α

⌉
−
⌈
M
dα

⌉
+ 2

General result...

Theorem

Let Γ = (V ,E ) be a (s, g)-graph with |V | = n and s > 2. If
g ≥ k = as + b such that s > b ≥ a + 1, then C obtained from Γ is
optimal with respect to the minimum distance bound when the file size
M = k(s − 1).
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Construction from collection of local FR codes

Pick FR code (Ω,V ) with parameters n - number of nodes, θ - number of
symbols, α - storage capacity, ρ- repetition degree, such that

Any ∆+1 nodes in V cover θ symbols.

Need to aim for a ∆ that is somewhat low.

Intersection size |Vi ∩ Vj | either equals β or 0.

Allows for symmetric download.

Construct C̄ by considering the disjoint union of l(> 1) copies of C. Thus,
C̄ has parameters (ln, lθ, α, β).
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Construction Example: Fano plane as a local FR code

7 

5 

2 1 

3 6 

4 

Parameters (θ, n, α, ρ, β) = (7, 7, 3, 3, 1). Resilient up to two failures.

Any ∆ + 1 = 5 nodes cover all 7 symbols.

Any 4 nodes covers at least 6 (Corradi’s lemma).
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Construction Example

4 copies of Fano plane on: X 7
1 ,Y

7
1 ,Z

7
1 and T 7

1 .

n = 28, θ = 28, repair degree = 3.

Any set of k = 15 nodes cover at least 17 symbols, hence M = 17.

Code resilient to 13 failures.
Meets the minimum distance bound for locally recoverable FR codes
that consist of local structures that are also FR codes.
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General result [Olmez & R. 2013]

Theorem

Suppose that the parameters of the local FR code satisfy
(ρ− 1)αθ − (θ + α)(∆− 1)β ≥ 0. Let the file size be M = tθ + α for
some 1 ≤ t < l . Then C̄ is minimum distance optimal.

Condition allows us to estimate file size M using Corradi’s lemma.

Several local FR codes satisfy the condition.

Affine resolvable FR codes.
Projective plane based FR codes.
Complete graphs, cycle graphs etc.
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Conclusions

Present a large class of resolvable FR codes. Allow the system
designer to vary the repetition degree within a large range in a simple
manner.

We answer a question posed in prior work [El Rouayheb and

Ramchandran ’10] about the existence of codes that are not derivable
from Steiner systems.

The systems under consideration require table-based repair.
Resolvable nature of the code, makes the implementation of the table
very simple.

Olmez & R., ”Fractional repetition codes with flexible repair from combinatorial designs”, preprint 2014 (on arxiv).

Conference papers at Allerton 2012, NetCod 2013 and Asilomar 2013.
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Conclusions

Our locally repairable FR codes meet the minimum distance bound
for certain file size values.

We also derive a minimum distance bound that is tighter in the case
of codes with exact and uncoded repair.

Olmez & R., ”Fractional repetition codes with flexible repair from combinatorial designs”, 2014 (on arxiv).

Conference papers at Allerton 2012, NetCod 2013 and Asilomar 2013.
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