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Anecdote1

• In 1995 M. Treacy & F. Wiersema published
book

• Despite average reviews

• 15 weeks on NYTimes bestseller list
• Bloomberg Businessweek bestseller

list
• ∼ 250K copies sold by 2012

• W. Stern of Bloomberg Businessweek in
Aug’95:
Authors bought ∼ 10K initial copies to make
NYTimes list
Increased speaking contracts & fees!

• NYTimes changed best-seller list policies in
response

Audience greatly influenced by NYTimes’ ratings of book

1
Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades, Bikhchandani,

Hirshleifer & Welch, Journal of Economic Perspectives, 1998
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• Model this as a problem of social learning or
Bayesian observational learning

• Studied in economics literature as a dynamic game with
incomplete information

• Bikhchandani, Hirshleifer and Welch 1992 [BHW], Banerjee
1992, Smith and Sorensen 2000, Acemoglu et al. 2011

• Connected to sequential detection/hypothesis testing

• Cover 1969, HellmanCover 1970
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BHW model

• An item is available in a market at cost 1/2

• Item’s value (V ) equally likely Good (1) or Bad (0)

• Agents sequentially decide to Buy or Not Buy the item

• Ai = Y or Ai = N

• These decisions are recorded via a database

• Agent i ’s payoff, πi :

Action Ai

N:

Y :

payoff πi = 0
payoff πi = −1

2 if V = 0

payoff πi = + 1
2 if V = 1
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Information Structure

• Agent i (i = 1, 2, ...) receives i.i.d. private signal, Si

• Obtained from V via a BSC(1− p)
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• Assume 0.5 < p < 1: Private signal is informative, but
non-revealing

• Agent i >= 2 observes actions A1, ...,Ai−1 in addition to Si

Database provides this information

• Denote the information set as Ii = {Si ,A1, ...,Ai−1}
• Distribution of value and signals are common knowledge.
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• Suppose each agent seeks to maximize her expected pay-off.
• Given her infromation set

• Without any information:

• Expected payoff E [πi ] = 0 since P[V = 1] = P[V = 0] = 1
2

• With only private signal:

• Update posterior probability:
Pr(V = G |Si = H) = Pr(V = B|Si = L) = p > 0.5

• Optimal Action: Buy if and only if Si = H.
• Pay-off: E [πi ] = 1
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Bayesian Rational Agents cont’d.

• With private signal Si and actions A1, ...,Ai−1:

• Update posterior probability P[V = 1|Ii ] = P[Ii |V=1]
P[Ii |V=1]+P[Ii |V=0]

• Decision:

Action Ai N if P[V = 1|Ii ] < 1
2

Y if P[V = 1|Ii ] > 1
2

follow own signal if P[V = 1|Ii ] = 1
2

• Can now iteratively calculate the actions of each agent for a
given realization of V and {Si}.
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BHW’92 Analysis

• First agent always follows their own signal.

• Consider second agent.

• Two possibilities:

• Observation and signal match.
• Observation and signal differ.

• In second case, agent is indifferent between following signal or
not.2

• Third agent?

• Interesting cases: I3 = {H,N,N} or {L,Y ,Y }.
• In these cases, optimal action is to “follow the crowd”

• Subsequent agents?

2Here assume they always follow signal in this case.
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Herding

• Definition: Herding (informational cascade) occurs when it is
optimal for an agent to take a fixed action based on other
agents’ actions, regardless of her own signal

• Consequences:

• Non-zero probability of herding in wrong decision
• Private signal information lost

• BHW’92, Banerjee’92, Welch’92: Agents eventually exhibit
herding

• BHW’92: herding as soon as |#Y ′s −#N ′s| = 2 in the
history.

Once herding starts, all agents follow suit.
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Do real people herd?

• Ball-drawing experiment (Anderson & Holt 1997)
• Two urns with mix of red and blue balls.

• One has a majority of blue/one majority red.
• One Urn selected and identity kept secret.
• Students take turns drawing one ball from the selected urn,

then guessing which urn it is.

• Only see the color of the drawn ball
• Students see all previous students’ guesses

• Experiment is repeated, each time the urn is chosen randomly.
• Students with correct guess will be rewarded after the

experiment
• Result: About 80% of the cases the students copy guesses.
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• Only see the color of the drawn ball
• Students see all previous students’ guesses

• Experiment is repeated, each time the urn is chosen randomly.
• Students with correct guess will be rewarded after the

experiment
• Result: About 80% of the cases the students copy guesses.



Discussion
Why does herding happen? OR When can learning occur?

• Discrete feedback from agents is not rich enough
• Cover1969, SmithSorensen2000: reporting posterior beliefs

better
• Cover1969, Hellman thesis: Can reduce to finite memory of

display

• Likelihood ratios of private signals bounded
• SmithSorensen2000, Sorensen2000 thesis: if unbounded, then

learning occurs

• Bayes update plus threshold rule may not be optimal
• Cover1969: different rule with finite memory display
• Zhang et al. 2013: different sequence of thresholds gives

learning

• Information structure reinforces actions
• Acemoglu et al. 2011: changing set of past agents sampled

gives learning even with bounded likelihoods

Why should strategic users follow any of these remedial schemes?
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Noisy Observations

• Introduce i.i.d. observation errors

• Actions are recorded on common database via another BSC(ε),
0 < ε < 0.5

0
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1− ε
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Ai Oi
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• Information set is now Ii = {Si ,O1, ...,Oi−1}
• Objective: Study the effects of such errors on BHW model

• Note with noisy, observations are less reliable
• Does herding still occur?
• How does probability of wrong herding change?
• Can parameters be changed to improve things?
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Herding in noiseless and noisy models

Noiseless Model ε = 0 Noisy Model ε > 0

Available {Si ,A1, ...,Ai−1} {Si ,O1, ...,Oi−1}
Information

Posterior P[V = 1|Si ,A1, ...,Ai−1] P[V = 1|Si ,O1, ...,Oi−1]
Probability

Agent 1 Follows private signal S1 Follows private signal S1

Agent 2 Follows private signal S2 Follows private signal S2

Agent 3 herding iff A1 = A2 herding iff O1 = O2

and ε < ε∗(3, p)

Agent n herding iff |#Y ′s −#N ′s| ≥ 2 herding iff |#Y ′s −#N ′s| ≥ k
and ε < ε∗(k + 1, p)
for some integer k ≥ 2

• We can obtain closed-form expression for ε∗(k + 1, p) (thresholds)
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Summary of herding property

Model inherits many behaviors of noiseless model ([BHW’92], ε = 0)

• Property 1 Until herding occurs, each agent’s Bayesian update
depends only on their private signal and the difference
(#Y ′s −#N ′s) in the observation history

• Property 2 Once herding happens, it lasts forever

• Property 3 Given ε∗(k, p) ≤ ε < ε∗(k + 1, p), if any time in the
history |#Y ′s −#N ′s| ≥ k, then herding will start

• Eventually herding happens (in finite time)
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Markov chain viewpoint

• Assume V = 1 and ε∗(k , p) ≤ ε < ε∗(k + 1, p)

• State at time i is (#Y ′s −#N ′s) seen by an agent i

• Time index = agent’s index

-k -k+1 kk-10 1-1

a

1-a1

1aaaa

1-a 1-a 1-a 1-a

• Agent 1 starts at state 0

• a = P[One more Y added ] = (1− ε)p + ε(1− p) > 0.5,
decreasing in ε, increasing in p

• Absorbing state k : herd Y , Absorbing state −k : herd N
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Markov Chain viewpoint (continued)
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• Can exactly calculate expected payoff E [πi ] & probability of
wrong (correct) herding for any agent i

• E [πi ] (MC with rewards)

• P[wrongi−1] =
∑i−1

n=1 P[agent n is the first to hit − k]

• P[correcti−1] =
∑i−1

n=1 P[agent n is the first to hit k]
• First-time hitting probabilities: Use probability generating

function method [Feller’68]
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Results

• Payoff for agents is non-decreasing in i
& at least F = 2p−1

4 > 0

• Limiting payoff Π(ε) & probability of
wrong herding can be analyzed

• For ε∗(k, p) ≤ ε < ε∗(k + 1, p)

• Probability of wrong herding
increases

• Π(ε) decreases to F

• Probability of wrong herding jumps
when k changes

• Limiting payoff also jumps at same
point
F = Π(ε∗(k + 1, p)−) <
Π(ε∗(k + 1, p)+)

• There exists a range where increasing
noise improves performance!!!
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Results for an arbitrary agent i
Similar ordering holds for every user’s payoff & probability of
wrong herding

• Discontinuities and jumps at the same thresholds

• For ε∗(k, p) ≤ ε < ε∗(k + 1, p): E [πi ] decreases in ε

• Proof using stochastic ordering of Markov Chains & coupling
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• For given level of noise, adding more noise may not improve
all agents pay-offs.
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Extension: Quasi-rational agents

• Real-world agents not always rational

• One simple model: agents make ”action errors” with some
probability ε1

• e.g., noisy best response, trembling hand, inconsistency in
preferences

• How to account for this (assuming ε1 is known)?

• Nothing really new from view of other agents
• But pay-off calculation changes
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Results: Quasi-rational agents and Noise

• Consider three “errors”

• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action

• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong

• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used

• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)

• There exist cases where adding more observation noise (ε3)
always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Results: Quasi-rational agents and Noise

• Consider three “errors”
• ε1 ∈ (0, 0.5): probability agents choose sub-optimal action
• ε2 ∈ (0, 0.5): probability actions are recorded wrong
• ε3 ∈ (0, 0.5): probability social planner flips the action record

• Similar result as before: equivalent total noise ε used
• Each user’s payoff is reduced by a factor (1− 2ε1)
• There exist cases where adding more observation noise (ε3)

always increases limiting payoff (even if ε2 = 0)

0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

p = 0.70, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.70

0 0.1 0.2 0.3 0.4 0.5
0.13

0.14

0.15

0.16

0.17

0.18

p = 0.80, ǫ1 = 0.05, ǫ2 = 0.1

ǫ3

Π
(ǫ

1
,
ǫ̃
2
)

Limiting payoff, p = 0.80



Conclusions

• Analyzed simple Bayesian learning model with noise for
herding behavior

• Noise thresholds determine the onset of herding
• For ε∗(k, p) ≤ ε < ε∗(k + 1, p), require |#Y ′s −#N ′s| ≥ k to

trigger herding.
• Generalized BHW’92: k = 2 for noiseless model

• With noisy observations, sometimes it is better to increase the
noise

• Probability of wrong herding decreases
• Asymptotic individual expected welfare increases
• Average social welfare increases
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Future directions

• Heterogeneous private signal qualities and noises

• Possibility of more actions, richer responses
• Combination with Sgroi’02 (guinea pigs)

Force M initial agents to use private signals
• Investment in private signal when facing high wrong herding

probability

• Different network structures

• Strategic agents in endogenous time

• Achieve learning with agents incentivized to participate
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