The Impact of Observation and Action Errors on Informational Cascades

Vijay G Subramanian

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE UNIVERSITY OF MICHIGAN

Joint work with Tho Le \& Randall Berry, Northwestern University

Supported by NSF via grant IIS-1219071

CSP Seminar

November 6, 2014

Anecdote ${ }^{1}$

- In 1995 M. Treacy \& F. Wiersema published book
${ }^{1}$ Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades, Bikhchandani, Hirshleifer \& Welch, Journal of Economic Perspectives, 1998

Anecdote ${ }^{1}$

III: New York Times BELTSB:LLER THE
DISCIPLINE OF мавккет LeADERS
"A common-sease map toward market leadership."
-The Washingfoe Post
CHODSE YOUR CUSTGMERS,
CHODSE YOUR CUSTGMERS,
NaRROW Your Facus,
NaRROW Your Facus,
DIMINATE YGUR MARKET
DIMINATE YGUR MARKET
Michael Treacy
Michael Treacy
\& Fred WiersemA
\& Fred WiersemA
${ }^{1}$ Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades, Bikhchandani, Hirshleifer \& Welch, Journal of Economic Perspectives, 1998

Anecdote ${ }^{1}$

- In 1995 M. Treacy \& F. Wiersema published book
- Despite average reviews
- 15 weeks on NYTimes bestseller list
- Bloomberg Businessweek bestseller list
- ~ 250 K copies sold by 2012
- W. Stern of Bloomberg Businessweek in Aug'95:
Authors bought $\sim 10 K$ initial copies to make NYTimes list
Increased speaking contracts \& fees!
${ }^{1}$ Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades, Bikhchandani, Hirshleifer \& Welch, Journal of Economic Perspectives, 1998

Anecdote ${ }^{1}$

- In 1995 M. Treacy \& F. Wiersema published book
- Despite average reviews
- 15 weeks on NYTimes bestseller list
- Bloomberg Businessweek bestseller list
- ~ 250 K copies sold by 2012
- W. Stern of Bloomberg Businessweek in Aug'95:
Authors bought $\sim 10 K$ initial copies to make NYTimes list
Increased speaking contracts \& fees!
- NYTimes changed best-seller list policies in response
${ }^{1}$ Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades, Bikhchandani, Hirshleifer \& Welch, Journal of Economic Perspectives, 1998

Anecdote ${ }^{1}$

- In 1995 M. Treacy \& F. Wiersema published book
- Despite average reviews
- 15 weeks on NYTimes bestseller list
- Bloomberg Businessweek bestseller list
- $\sim 250 K$ copies sold by 2012
- W. Stern of Bloomberg Businessweek in Aug'95:
Authors bought $\sim 10 K$ initial copies to make NYTimes list
Increased speaking contracts \& fees!
- NYTimes changed best-seller list policies in response
Audience greatly influenced by NYTimes' ratings of book

[^0]
Motivation

E-commerce, online reviews, collaborative filtering

Motivation

E-commerce, online reviews, collaborative filtering

- E-commerce sites make it easy to find out the actions/opinions of others.
- Future customers can use this information to make their decisions/purchases

Motivation

E-commerce, online reviews, collaborative filtering

- E-commerce sites make it easy to find out the actions/opinions of others.

- Future customers can use this information to make their decisions/purchases

Motivation

E-commerce, online reviews, collaborative filtering

- E-commerce sites make it easy to find out the actions/opinions of others.

New offers for

Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and Signal Pr by Joy A. Themas, T. M. Cove

3 custmernewisus
-Reum to procici intormation
Heve cone to sell?

New from \$60.99 (Sive 49N) Used fom \$59.36 (Save 50\%)

Show ony. Free shicping Socted bf. Price + Shipping			
Price + Stipping	Condition (Leam More)	Seller Information	Delivery
\$60.99	New	SuperBookDeals-*	- n Slock
+ $\$ 3.99$ stipring	${ }^{100 \%}$ Noney Back Guaranlee. Stips from muliple US bcarons, willstip hemmational Brand Nem, Pertest Consition, Flasse al.... \& Read more	89\% posilive over the pass 12 months (127,714 total rablys)	- Ships fom IN, Urited Slalas - Domestic stipping rabes and
\$61.00	New	Bookfari	- n Slock
+ $\$ 3.99$ stipping	Al books are despatched using DHL Goba3 Mail wittin one business day ol order receipt and can be taced using the tracking code provided	95\% positive oves the past 12 moriths. (996 kotal ratings)	- Ships fom IL, Uritad Staies - Donestic stippoing rates and

- Future customers can use this information to make their decisions/purchases

Design Questions

- What is the best information to display?

Design Questions

- What is the best information to display?
- How should one optimally use this information?

Design Questions

- What is the best information to display?
- How should one optimally use this information?
- Can pathological phenomena emerge?

Design Questions

- What is the best information to display?
- How should one optimally use this information?
- Can pathological phenomena emerge?
- What if information is noisy?

Design Questions

- What is the best information to display?
- How should one optimally use this information?
- Can pathological phenomena emerge?
- What if information is noisy?

```
Rating Details
1 star 29
```

x

We calculate the overall star rating using only reviews that our automated software currently recommends. Learn more.

Bayesian Observational Learning

- Model this as a problem of social learning or Bayesian observational learning

Bayesian Observational Learning

- Model this as a problem of social learning or Bayesian observational learning
- Studied in economics literature as a dynamic game with incomplete information
- Bikhchandani, Hirshleifer and Welch 1992 [BHW], Banerjee 1992, Smith and Sorensen 2000, Acemoglu et al. 2011

Bayesian Observational Learning

- Model this as a problem of social learning or Bayesian observational learning
- Studied in economics literature as a dynamic game with incomplete information
- Bikhchandani, Hirshleifer and Welch 1992 [BHW], Banerjee 1992, Smith and Sorensen 2000, Acemoglu et al. 2011
- Connected to sequential detection/hypothesis testing
- Cover 1969, HellmanCover 1970

BHW model

- An item is available in a market at cost $1 / 2$

BHW model

- An item is available in a market at cost $1 / 2$
- Item's value (V) equally likely Good (1) or Bad (0)

BHW model

- An item is available in a market at cost $1 / 2$
- Item's value (V) equally likely Good (1) or Bad (0)
- Agents sequentially decide to Buy or Not Buy the item
- $A_{i}=Y$ or $A_{i}=N$

BHW model

- An item is available in a market at cost $1 / 2$
- Item's value (V) equally likely Good (1) or Bad (0)
- Agents sequentially decide to Buy or Not Buy the item
- $A_{i}=Y$ or $A_{i}=N$
- These decisions are recorded via a database

BHW model

- An item is available in a market at cost $1 / 2$
- Item's value (V) equally likely Good (1) or Bad (0)
- Agents sequentially decide to Buy or Not Buy the item
- $A_{i}=Y$ or $A_{i}=N$
- These decisions are recorded via a database
- Agent i 's payoff, π_{i} :

Information Structure

- Agent $i(i=1,2, \ldots)$ receives i.i.d. private signal, S_{i}

Information Structure

- Agent $i(i=1,2, \ldots)$ receives i.i.d. private signal, S_{i}
- Obtained from V via a $\operatorname{BSC}(1-p)$

Information Structure

- Agent $i(i=1,2, \ldots)$ receives i.i.d. private signal, S_{i}
- Obtained from V via a $\operatorname{BSC}(1-p)$

- Assume $0.5<p<1$: Private signal is informative, but non-revealing

Information Structure

- Agent $i(i=1,2, \ldots)$ receives i.i.d. private signal, S_{i}
- Obtained from V via a $\operatorname{BSC}(1-p)$

- Assume $0.5<p<1$: Private signal is informative, but non-revealing
- Agent $i>=2$ observes actions A_{1}, \ldots, A_{i-1} in addition to S_{i} Database provides this information

Information Structure

- Agent $i(i=1,2, \ldots)$ receives i.i.d. private signal, S_{i}
- Obtained from V via a $\operatorname{BSC}(1-p)$

- Assume $0.5<p<1$: Private signal is informative, but non-revealing
- Agent $i>=2$ observes actions A_{1}, \ldots, A_{i-1} in addition to S_{i} Database provides this information
- Denote the information set as $I_{i}=\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$

Information Structure

- Agent $i(i=1,2, \ldots)$ receives i.i.d. private signal, S_{i}
- Obtained from V via a $\operatorname{BSC}(1-p)$

- Assume $0.5<p<1$: Private signal is informative, but non-revealing
- Agent $i>=2$ observes actions A_{1}, \ldots, A_{i-1} in addition to S_{i} Database provides this information
- Denote the information set as $I_{i}=\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$
- Distribution of value and signals are common knowledge.

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set
- Without any information:

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set
- Without any information:
- Expected payoff $E\left[\pi_{i}\right]=0$ since $\mathbb{P}[V=1]=\mathbb{P}[V=0]=\frac{1}{2}$

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set
- Without any information:
- Expected payoff $E\left[\pi_{i}\right]=0$ since $\mathbb{P}[V=1]=\mathbb{P}[V=0]=\frac{1}{2}$
- With only private signal:

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set
- Without any information:
- Expected payoff $E\left[\pi_{i}\right]=0$ since $\mathbb{P}[V=1]=\mathbb{P}[V=0]=\frac{1}{2}$
- With only private signal:
- Update posterior probability:

$$
\operatorname{Pr}\left(V=G \mid S_{i}=H\right)=\operatorname{Pr}\left(V=B \mid S_{i}=L\right)=p>0.5
$$

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set
- Without any information:
- Expected payoff $E\left[\pi_{i}\right]=0$ since $\mathbb{P}[V=1]=\mathbb{P}[V=0]=\frac{1}{2}$
- With only private signal:
- Update posterior probability:

$$
\operatorname{Pr}\left(V=G \mid S_{i}=H\right)=\operatorname{Pr}\left(V=B \mid S_{i}=L\right)=p>0.5
$$

- Optimal Action: Buy if and only if $S_{i}=H$.

Bayesian Rational Agents

- Suppose each agent seeks to maximize her expected pay-off.
- Given her infromation set
- Without any information:
- Expected payoff $E\left[\pi_{i}\right]=0$ since $\mathbb{P}[V=1]=\mathbb{P}[V=0]=\frac{1}{2}$
- With only private signal:
- Update posterior probability:

$$
\operatorname{Pr}\left(V=G \mid S_{i}=H\right)=\operatorname{Pr}\left(V=B \mid S_{i}=L\right)=p>0.5
$$

- Optimal Action: Buy if and only if $S_{i}=H$.
- Pay-off: $E\left[\pi_{i}\right]=\frac{1}{2}\left(\frac{2 p-1}{2}\right)+\frac{1}{2}(0)=\frac{2 p-1}{4}>0$

Bayesian Rational Agents cont'd.

- With private signal S_{i} and actions A_{1}, \ldots, A_{i-1} :

Bayesian Rational Agents cont'd.

- With private signal S_{i} and actions A_{1}, \ldots, A_{i-1} :
- Update posterior probability $\mathbb{P}\left[V=1 \mid I_{i}\right]=\frac{\mathbb{P}\left[l_{i} \mid V=1\right]}{\mathbb{P}\left[I_{i} \mid V=1\right]+\mathbb{P}\left[l_{i} \mid V=0\right]}$

Bayesian Rational Agents cont'd.

- With private signal S_{i} and actions A_{1}, \ldots, A_{i-1} :
- Update posterior probability $\mathbb{P}\left[V=1 \mid I_{i}\right]=\frac{\mathbb{P}\left[I_{i} \mid V=1\right]}{\mathbb{P}\left[l_{i} \mid V=1\right]+\mathbb{P}\left[l_{i} \mid V=0\right]}$
- Decision:

$$
\text { Action } A_{i} \nLeftarrow \begin{aligned}
& Y \text { if } \mathbb{P}\left[V=1 \mid I_{i}\right]>\frac{1}{2} \\
& \hdashline N \text { if } \mathbb{P}\left[V=1 \mid I_{i}\right]<\frac{1}{2}
\end{aligned}
$$

Bayesian Rational Agents cont'd.

- With private signal S_{i} and actions A_{1}, \ldots, A_{i-1} :
- Update posterior probability $\mathbb{P}\left[V=1 \mid I_{i}\right]=\frac{\mathbb{P}\left[I_{i} \mid V=1\right]}{\mathbb{P}\left[I_{i} \mid V=1\right]+\mathbb{P}\left[l_{i} \mid V=0\right]}$
- Decision:

$$
\text { Action } A_{i} \nLeftarrow \begin{aligned}
& Y \text { if } \mathbb{P}\left[V=1 \mid I_{i}\right]>\frac{1}{2} \\
& \longleftrightarrow \begin{array}{l}
\text { follow own signal if } \mathbb{P}\left[V=1 \mid I_{i}\right]<\frac{1}{2}
\end{array} \\
& \left.\hdashline V=1 \mid I_{i}\right]=\frac{1}{2}
\end{aligned}
$$

- Can now iteratively calculate the actions of each agent for a given realization of V and $\left\{S_{i}\right\}$.

BHW'92 Analysis

- First agent always follows their own signal.
${ }^{2}$ Here assume they always follow signal in this case.

BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.

[^1]
BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.
- Two possibilities:
- Observation and signal match.
- Observation and signal differ.

[^2]
BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.
- Two possibilities:
- Observation and signal match.
- Observation and signal differ.
- In second case, agent is indifferent between following signal or not. ${ }^{2}$

[^3]
BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.
- Two possibilities:
- Observation and signal match.
- Observation and signal differ.
- In second case, agent is indifferent between following signal or not. ${ }^{2}$
- Third agent?

[^4]
BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.
- Two possibilities:
- Observation and signal match.
- Observation and signal differ.
- In second case, agent is indifferent between following signal or not. ${ }^{2}$
- Third agent?
- Interesting cases: $I_{3}=\{H, N, N\}$ or $\{L, Y, Y\}$.

[^5]
BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.
- Two possibilities:
- Observation and signal match.
- Observation and signal differ.
- In second case, agent is indifferent between following signal or not. ${ }^{2}$
- Third agent?
- Interesting cases: $I_{3}=\{H, N, N\}$ or $\{L, Y, Y\}$.
- In these cases, optimal action is to "follow the crowd"

[^6]
BHW'92 Analysis

- First agent always follows their own signal.
- Consider second agent.
- Two possibilities:
- Observation and signal match.
- Observation and signal differ.
- In second case, agent is indifferent between following signal or not. ${ }^{2}$
- Third agent?
- Interesting cases: $I_{3}=\{H, N, N\}$ or $\{L, Y, Y\}$.
- In these cases, optimal action is to "follow the crowd"
- Subsequent agents?

[^7]
Herding

- Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents' actions, regardless of her own signal

Herding

- Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents' actions, regardless of her own signal
- Consequences:

Herding

- Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents' actions, regardless of her own signal
- Consequences:
- Non-zero probability of herding in wrong decision

Herding

- Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents' actions, regardless of her own signal
- Consequences:
- Non-zero probability of herding in wrong decision
- Private signal information lost

Herding

- Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents' actions, regardless of her own signal
- Consequences:
- Non-zero probability of herding in wrong decision
- Private signal information lost
- BHW'92, Banerjee'92, Welch'92: Agents eventually exhibit herding

Herding

- Definition: Herding (informational cascade) occurs when it is optimal for an agent to take a fixed action based on other agents' actions, regardless of her own signal
- Consequences:
- Non-zero probability of herding in wrong decision
- Private signal information lost
- BHW'92, Banerjee'92, Welch'92: Agents eventually exhibit herding
- BHW'92: herding as soon as $\left|\# Y^{\prime} s-\# N^{\prime} s\right|=2$ in the history.

Once herding starts, all agents follow suit.

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.
- Students take turns drawing one ball from the selected urn, then guessing which urn it is.

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.
- Students take turns drawing one ball from the selected urn, then guessing which urn it is.
- Only see the color of the drawn ball
- Students see all previous students' guesses

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.
- Students take turns drawing one ball from the selected urn, then guessing which urn it is.
- Only see the color of the drawn ball
- Students see all previous students' guesses
- Experiment is repeated, each time the urn is chosen randomly.

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.
- Students take turns drawing one ball from the selected urn, then guessing which urn it is.
- Only see the color of the drawn ball
- Students see all previous students' guesses
- Experiment is repeated, each time the urn is chosen randomly.
- Students with correct guess will be rewarded after the experiment

Do real people herd?

- Ball-drawing experiment (Anderson \& Holt 1997)
- Two urns with mix of red and blue balls.
- One has a majority of blue/one majority red.
- One Urn selected and identity kept secret.
- Students take turns drawing one ball from the selected urn, then guessing which urn it is.
- Only see the color of the drawn ball
- Students see all previous students' guesses
- Experiment is repeated, each time the urn is chosen randomly.
- Students with correct guess will be rewarded after the experiment
- Result: About 80% of the cases the students copy guesses.

Discussion
 Why does herding happen? OR When can learning occur?

Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
- Cover1969, SmithSorensen2000: reporting posterior beliefs better
- Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
- SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs

Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
- Cover1969, SmithSorensen2000: reporting posterior beliefs better
- Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
- SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
- Bayes update plus threshold rule may not be optimal
- Cover1969: different rule with finite memory display
- Zhang et al. 2013: different sequence of thresholds gives learning

Discussion
 Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
- Cover1969, SmithSorensen2000: reporting posterior beliefs better
- Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
- SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
- Bayes update plus threshold rule may not be optimal
- Cover1969: different rule with finite memory display
- Zhang et al. 2013: different sequence of thresholds gives learning
- Information structure reinforces actions
- Acemoglu et al. 2011: changing set of past agents sampled gives learning even with bounded likelihoods

Discussion

Why does herding happen? OR When can learning occur?

- Discrete feedback from agents is not rich enough
- Cover1969, SmithSorensen2000: reporting posterior beliefs better
- Cover1969, Hellman thesis: Can reduce to finite memory of display
- Likelihood ratios of private signals bounded
- SmithSorensen2000, Sorensen2000 thesis: if unbounded, then learning occurs
- Bayes update plus threshold rule may not be optimal
- Cover1969: different rule with finite memory display
- Zhang et al. 2013: different sequence of thresholds gives learning
- Information structure reinforces actions
- Acemoglu et al. 2011: changing set of past agents sampled gives learning even with bounded likelihoods

Why should strategic users follow any of these remedial schemes?

Noisy Observations

- Introduce i.i.d. observation errors

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

- Information set is now $I_{i}=\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

- Information set is now $I_{i}=\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
- Objective: Study the effects of such errors on BHW model

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

- Information set is now $I_{i}=\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
- Objective: Study the effects of such errors on BHW model
- Note with noisy, observations are less reliable

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

- Information set is now $I_{i}=\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
- Objective: Study the effects of such errors on BHW model
- Note with noisy, observations are less reliable
- Does herding still occur?

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

- Information set is now $I_{i}=\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
- Objective: Study the effects of such errors on BHW model
- Note with noisy, observations are less reliable
- Does herding still occur?
- How does probability of wrong herding change?

Noisy Observations

- Introduce i.i.d. observation errors
- Actions are recorded on common database via another $\operatorname{BSC}(\epsilon)$, $0<\epsilon<0.5$

- Information set is now $I_{i}=\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
- Objective: Study the effects of such errors on BHW model
- Note with noisy, observations are less reliable
- Does herding still occur?
- How does probability of wrong herding change?
- Can parameters be changed to improve things?

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information		

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability		

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1		

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2		

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3		

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3	herding iff $A_{1}=A_{2}$	

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3	herding iff $A_{1}=A_{2}$	herding iff $O_{1}=O_{2}$ and $\epsilon<\epsilon^{*}(3, p)$

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3	herding iff $A_{1}=A_{2}$	herding iff $O_{1}=O_{2}$ and $\epsilon<\epsilon^{*}(3, p)$
Agent n		

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3	herding iff $A_{1}=A_{2}$	herding iff $O_{1}=O_{2}$ and $\epsilon<\epsilon^{*}(3, p)$
Agent n	herding iff $\left\|\# Y^{\prime} s-\# N^{\prime} s\right\| \geq 2$	

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3	herding iff $A_{1}=A_{2}$	herding iff $O_{1}=O_{2}$ and $\epsilon<\epsilon^{*}(3, p)$
Agent n	herding iff $\left\|\# Y^{\prime} s-\# N^{\prime} s\right\| \geq 2$	herding iff $\left\|\# Y^{\prime} s-\# N^{\prime} s\right\| \geq k$ and $\epsilon<\epsilon^{*}(k+1, p)$ for some integer $k \geq 2$

Herding in noiseless and noisy models

	Noiseless Model $\epsilon=0$	Noisy Model $\epsilon>0$
Available Information	$\left\{S_{i}, A_{1}, \ldots, A_{i-1}\right\}$	$\left\{S_{i}, O_{1}, \ldots, O_{i-1}\right\}$
Posterior Probability	$\mathbb{P}\left[V=1 \mid S_{i}, A_{1}, \ldots, A_{i-1}\right]$	$\mathbb{P}\left[V=1 \mid S_{i}, O_{1}, \ldots, O_{i-1}\right]$
Agent 1	Follows private signal S_{1}	Follows private signal S_{1}
Agent 2	Follows private signal S_{2}	Follows private signal S_{2}
Agent 3	herding iff $A_{1}=A_{2}$	herding iff $O_{1}=O_{2}$ and $\epsilon<\epsilon^{*}(3, p)$
Agent n	herding iff $\left\|\# Y^{\prime} s-\# N^{\prime} s\right\| \geq 2$	herding iff $\left\|\# Y^{\prime} s-\# N^{\prime} s\right\| \geq k$ and $\epsilon<\epsilon^{*}(k+1, p)$ for some integer $k \geq 2$

- We can obtain closed-form expression for $\epsilon^{*}(k+1, p)$ (thresholds)

Noise thresholds

Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon=0$)

Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon=0$)

- Property 1 Until herding occurs, each agent's Bayesian update depends only on their private signal and the difference ($\# Y^{\prime} s-\# N^{\prime} s$) in the observation history

Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon=0$)

- Property 1 Until herding occurs, each agent's Bayesian update depends only on their private signal and the difference ($\# Y^{\prime} s-\# N^{\prime} s$) in the observation history
- Property 2 Once herding happens, it lasts forever

Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon=0$)

- Property 1 Until herding occurs, each agent's Bayesian update depends only on their private signal and the difference ($\# Y^{\prime} s-\# N^{\prime} s$) in the observation history
- Property 2 Once herding happens, it lasts forever
- Property 3 Given $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$, if any time in the history $\left|\# Y^{\prime} s-\# N^{\prime} s\right| \geq k$, then herding will start

Summary of herding property

Model inherits many behaviors of noiseless model ([BHW'92], $\epsilon=0$)

- Property 1 Until herding occurs, each agent's Bayesian update depends only on their private signal and the difference ($\# Y^{\prime} s-\# N^{\prime} s$) in the observation history
- Property 2 Once herding happens, it lasts forever
- Property 3 Given $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$, if any time in the history $\left|\# Y^{\prime} s-\# N^{\prime} s\right| \geq k$, then herding will start
- Eventually herding happens (in finite time)

Markov chain viewpoint

- Assume $V=1$ and $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$

Markov chain viewpoint

- Assume $V=1$ and $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- State at time i is $\left(\# Y^{\prime} s-\# N^{\prime} s\right)$ seen by an agent i

Markov chain viewpoint

- Assume $V=1$ and $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- State at time i is $\left(\# Y^{\prime} s-\# N^{\prime} s\right)$ seen by an agent i
- Time index $=$ agent's index

Markov chain viewpoint

- Assume $V=1$ and $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- State at time i is $\left(\# Y^{\prime} s-\# N^{\prime} s\right)$ seen by an agent i
- Time index $=$ agent's index

- Agent 1 starts at state 0
- $a=\mathbb{P}[$ One more Y added $]=(1-\epsilon) p+\epsilon(1-p)>0.5$, decreasing in ϵ, increasing in p

Markov chain viewpoint

- Assume $V=1$ and $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- State at time i is $\left(\# Y^{\prime} s-\# N^{\prime} s\right)$ seen by an agent i
- Time index $=$ agent's index

- Agent 1 starts at state 0
- $a=\mathbb{P}[$ One more Y added $]=(1-\epsilon) p+\epsilon(1-p)>0.5$, decreasing in ϵ, increasing in p
- Absorbing state k : herd Y, Absorbing state $-k$: herd N

Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff $E\left[\pi_{i}\right]$ \& probability of wrong (correct) herding for any agent i

Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff $E\left[\pi_{i}\right]$ \& probability of wrong (correct) herding for any agent i
- $E\left[\pi_{i}\right]$ (MC with rewards)

Markov Chain viewpoint (continued)

- Can exactly calculate expected payoff $E\left[\pi_{i}\right]$ \& probability of wrong (correct) herding for any agent i
- $E\left[\pi_{i}\right]$ (MC with rewards)
- $\mathbb{P}\left[\right.$ wrong $\left._{i-1}\right]=\sum_{n=1}^{i-1} \mathbb{P}$ [agent n is the first to hit $\left.-k\right]$

Markov Chain viewpoint (continued)

wrong herding
(N)

- Can exactly calculate expected payoff $E\left[\pi_{i}\right] \&$ probability of wrong (correct) herding for any agent i
- $E\left[\pi_{i}\right]$ (MC with rewards)
- $\mathbb{P}\left[\right.$ wrong $\left._{i-1}\right]=\sum_{n=1}^{i-1} \mathbb{P}$ [agent n is the first to hit $\left.-k\right]$
- $\mathbb{P}\left[\right.$ correct $\left._{i-1}\right]=\sum_{n=1}^{i-1} \mathbb{P}$ [agent n is the first to hit $\left.k\right]$

Markov Chain viewpoint (continued)

wrong herding
(N)

- Can exactly calculate expected payoff $E\left[\pi_{i}\right] \&$ probability of wrong (correct) herding for any agent i
- $E\left[\pi_{i}\right]$ (MC with rewards)
- $\mathbb{P}\left[\right.$ wrong $\left._{i-1}\right]=\sum_{n=1}^{i-1} \mathbb{P}$ [agent n is the first to hit $\left.-k\right]$
- $\mathbb{P}\left[\right.$ correct $\left._{i-1}\right]=\sum_{n=1}^{i-1} \mathbb{P}$ [agent n is the first to hit $\left.k\right]$
- First-time hitting probabilities: Use probability generating function method [Feller'68]

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- Probability of wrong herding increases

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- Probability of wrong herding increases
- $\Pi(\epsilon)$ decreases to F

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- Probability of wrong herding increases
- $\Pi(\epsilon)$ decreases to F
- Probability of wrong herding jumps when k changes

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- Probability of wrong herding increases
- $\Pi(\epsilon)$ decreases to F
- Probability of wrong herding jumps when k changes
- Limiting payoff also jumps at same point
$F=\Pi\left(\epsilon^{*}(k+1, p)^{-}\right)<$ $\Pi\left(\epsilon^{*}(k+1, p)^{+}\right)$

Limiting wrong herding probability

Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$

Results

- Payoff for agents is non-decreasing in i \& at least $F=\frac{2 p-1}{4}>0$
- Limiting payoff $\Pi(\epsilon) \&$ probability of wrong herding can be analyzed
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$
- Probability of wrong herding increases
- $\Pi(\epsilon)$ decreases to F
- Probability of wrong herding jumps when k changes
- Limiting payoff also jumps at same point
$F=\Pi\left(\epsilon^{*}(k+1, p)^{-}\right)<$ $\Pi\left(\epsilon^{*}(k+1, p)^{+}\right)$

Limiting wrong herding probability

- There exists a range where increasing Limiting payoff $\Pi(\epsilon)=\lim _{i \rightarrow \infty} E\left[\pi_{i}\right]$ noise improves performance!!!

Results for an arbitrary agent i

Similar ordering holds for every user's payoff \& probability of wrong herding

- Discontinuities and jumps at the same thresholds
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$: $E\left[\pi_{i}\right]$ decreases in ϵ

Individual payoff for signal quality $\mathrm{p}=0.70$

Results for an arbitrary agent i

Similar ordering holds for every user's payoff \& probability of wrong herding

- Discontinuities and jumps at the same thresholds
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$: $E\left[\pi_{i}\right]$ decreases in ϵ
- Proof using stochastic ordering of Markov Chains \& coupling

Individual payoff for signal quality $\mathrm{p}=0.70$

Results for an arbitrary agent i

Similar ordering holds for every user's payoff \& probability of wrong herding

- Discontinuities and jumps at the same thresholds
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$: $E\left[\pi_{i}\right]$ decreases in ϵ
- Proof using stochastic ordering of Markov Chains \& coupling

Individual payoff for signal quality $\mathrm{p}=0.70$

- For given level of noise, adding more noise may not improve all agents pay-offs.

Extension: Quasi-rational agents

- Real-world agents not always rational

Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make "action errors" with some probability ϵ_{1}

Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make "action errors" with some probability ϵ_{1}
- e.g., noisy best response, trembling hand, inconsistency in preferences

Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make "action errors" with some probability ϵ_{1}
- e.g., noisy best response, trembling hand, inconsistency in preferences
- How to account for this (assuming ϵ_{1} is known)?

Extension: Quasi-rational agents

- Real-world agents not always rational
- One simple model: agents make "action errors" with some probability ϵ_{1}
- e.g., noisy best response, trembling hand, inconsistency in preferences
- How to account for this (assuming ϵ_{1} is known)?
- Nothing really new from view of other agents
- But pay-off calculation changes

Results: Quasi-rational agents and Noise

- Consider three "errors"

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action
- $\epsilon_{2} \in(0,0.5)$: probability actions are recorded wrong

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action
- $\epsilon_{2} \in(0,0.5)$: probability actions are recorded wrong
- $\epsilon_{3} \in(0,0.5)$: probability social planner flips the action record

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action
- $\epsilon_{2} \in(0,0.5)$: probability actions are recorded wrong
- $\epsilon_{3} \in(0,0.5)$: probability social planner flips the action record
- Similar result as before: equivalent total noise ϵ used

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action
- $\epsilon_{2} \in(0,0.5)$: probability actions are recorded wrong
- $\epsilon_{3} \in(0,0.5)$: probability social planner flips the action record
- Similar result as before: equivalent total noise ϵ used
- Each user's payoff is reduced by a factor $\left(1-2 \epsilon_{1}\right)$

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action
- $\epsilon_{2} \in(0,0.5)$: probability actions are recorded wrong
- $\epsilon_{3} \in(0,0.5)$: probability social planner flips the action record
- Similar result as before: equivalent total noise ϵ used
- Each user's payoff is reduced by a factor $\left(1-2 \epsilon_{1}\right)$
- There exist cases where adding more observation noise $\left(\epsilon_{3}\right)$ always increases limiting payoff (even if $\epsilon_{2}=0$)

Results: Quasi-rational agents and Noise

- Consider three "errors"
- $\epsilon_{1} \in(0,0.5)$: probability agents choose sub-optimal action
- $\epsilon_{2} \in(0,0.5)$: probability actions are recorded wrong
- $\epsilon_{3} \in(0,0.5)$: probability social planner flips the action record
- Similar result as before: equivalent total noise ϵ used
- Each user's payoff is reduced by a factor $\left(1-2 \epsilon_{1}\right)$
- There exist cases where adding more observation noise $\left(\epsilon_{3}\right)$ always increases limiting payoff (even if $\epsilon_{2}=0$)

Limiting payoff, $p=0.70$

Limiting payoff, $p=0.80$

Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior

Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior
- Noise thresholds determine the onset of herding
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$, require $\left|\# Y^{\prime} s-\# N^{\prime} s\right| \geq k$ to trigger herding.
- Generalized BHW'92: $k=2$ for noiseless model

Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior
- Noise thresholds determine the onset of herding
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$, require $\left|\# Y^{\prime} s-\# N^{\prime} s\right| \geq k$ to trigger herding.
- Generalized BHW'92: $k=2$ for noiseless model
- With noisy observations, sometimes it is better to increase the noise

Conclusions

- Analyzed simple Bayesian learning model with noise for herding behavior
- Noise thresholds determine the onset of herding
- For $\epsilon^{*}(k, p) \leq \epsilon<\epsilon^{*}(k+1, p)$, require $\left|\# Y^{\prime} s-\# N^{\prime} s\right| \geq k$ to trigger herding.
- Generalized BHW'92: $k=2$ for noiseless model
- With noisy observations, sometimes it is better to increase the noise
- Probability of wrong herding decreases
- Asymptotic individual expected welfare increases
- Average social welfare increases

Future directions

- Heterogeneous private signal qualities and noises

Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
- Combination with Sgroi'02 (guinea pigs)

Force M initial agents to use private signals

- Investment in private signal when facing high wrong herding probability

Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
- Combination with Sgroi'02 (guinea pigs)

Force M initial agents to use private signals

- Investment in private signal when facing high wrong herding probability
- Different network structures

Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
- Combination with Sgroi'02 (guinea pigs)

Force M initial agents to use private signals

- Investment in private signal when facing high wrong herding probability
- Different network structures
- Strategic agents in endogenous time

Future directions

- Heterogeneous private signal qualities and noises
- Possibility of more actions, richer responses
- Combination with Sgroi'02 (guinea pigs)

Force M initial agents to use private signals

- Investment in private signal when facing high wrong herding probability
- Different network structures
- Strategic agents in endogenous time
- Achieve learning with agents incentivized to participate

References

W. Feller, An introduction to Probability Theory and Its Applications, vol. I, 3rd ed., New York Wiley, 1968.
T. M. Cover, Hypothesis Testing with Finite Statistics, Ann. Math. Stat., 40(3):828-835, June 1969.
M. E. Hellman and T. M. Cover, Learning with Finite Memory, Ann. Math. Stat., 41(3):765-782, June 1970.
S. Bikhchandani, D. Hirshleifer, and I. Welch. A Theory of Fads, Fashion, Custom and Cultural Change as Informational Cascades, J. Polit. Econ., vol. 100, No. 5, pp. 992-1026, 1992.
D. Sgroi, Optimizing Information in the Herd: Guinea Pigs, Profits, and Welfare, Games and Economic Behaviour, vol. 39, pp. 137-166, 2002.
L. Smith, P. Sorensen, Pathological Outcomes of Observational Learning, Econometrica, vol. 68, pp. 371-398, 2000.
D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
D. Acemoglu, M. Dahleh, I. Lobel, and A. Ozdaglar, Bayesian learning in social networks, Review of Economic Studies, vol. 78, pp. 1201-1236, 2011.
Z. Zhang, E. K. P. Chong, A. Pezeshki, and W. Moran, Hypothesis testing in feedforward networks with broadcast failures, IEEE Journal of Selected Topics in Signal Processing, special issue on Learning-Based Decision Making in Dynamic Systems under Uncertainty, vol. 7, no. 5, pp. 797-810, October 2013.
T. Le, V. Subramanian, R. Berry, The Value of Noises for Informational Cascades, ISIT 2014.
T. Le, V. Subramanian, R. Berry, The Impact of Observation and Action Errors on Informational Cascades, to appear CDC 2014.

Thank you!

[^0]: ${ }^{1}$ Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades, Bikhchandani, Hirshleifer \& Welch, Journal of Economic Perspectives, 1998

[^1]: ${ }^{2}$ Here assume they always follow signal in this case.

[^2]: ${ }^{2}$ Here assume they always follow signal in this case.

[^3]: ${ }^{2}$ Here assume they always follow signal in this case.

[^4]: ${ }^{2}$ Here assume they always follow signal in this case.

[^5]: ${ }^{2}$ Here assume they always follow signal in this case.

[^6]: ${ }^{2}$ Here assume they always follow signal in this case.

[^7]: ${ }^{2}$ Here assume they always follow signal in this case.

