# Can 'finite' be more than 'infinite' in distributed 

## source coding

S. Sandeep Pradhan<br>(Joint work with Farhad Shirani)<br>University of Michigan, Ann Arbor

U of M 2014

## Distributed Information Coding

- Proliferation of Internet, wireless and sensor network applications
- Supported by distributed information processing
- Information-theoretic perspective


## 1: Distributed Field Gathering



## 2: Broadcast and Interference Networks



## 3: Streaming over the Internet



## Information and Coding theory: Tradition

Information Theory:

- Develop efficient communication strategies
- No constraints on memory/computation for encoding/decoding
- Obtain performance limits that are independent of technology


## Information and Coding theory: Tradition

Information Theory:

- Develop efficient communication strategies
- No constraints on memory/computation for encoding/decoding
- Obtain performance limits that are independent of technology

Coding Theory:

- Approach these limits using algebraic codes (Ex: linear codes)
- Fast encoding and decoding algorithms
- Objective: practical implementability of optimal communication systems


## Point-to-point Data Compression (lossy)

Start with Binary Symmetric Source: X is IID $\operatorname{Be}(1 / 2)$

- Wish to compress with Hamming distortion: $d_{H}(x, \hat{x})=1$ if $x \neq \hat{x}$ and equals 0 otherwise.


## Point-to-point Data Compression (lossy)

Start with Binary Symmetric Source: X is IID $\operatorname{Be}(1 / 2)$

- Wish to compress with Hamming distortion: $d_{H}(x, \hat{x})=1$ if $x \neq \hat{x}$ and equals 0 otherwise.
- Minimum Rate of Compression for a given distortion $\delta$ :


## Point-to-point Data Compression (lossy)

Start with Binary Symmetric Source: X is IID $\operatorname{Be}(1 / 2)$

- Wish to compress with Hamming distortion: $d_{H}(x, \hat{x})=1$ if $x \neq \hat{x}$ and equals 0 otherwise.
- Minimum Rate of Compression for a given distortion $\delta$ :

$$
R(D)=\min _{P(\hat{X} \mid X)} I(X ; \hat{X})=1-h(\delta)
$$

- $E\left(d_{H}(X, \hat{X})\right) \leq \delta$.
- Single-letter relation between source and its quantized version


## Point-to-point Data Compression (lossy)

Start with Binary Symmetric Source: X is IID Be(1/2)

- Wish to compress with Hamming distortion: $d_{H}(x, \hat{x})=1$ if $x \neq \hat{x}$ and equals 0 otherwise.
- Minimum Rate of Compression for a given distortion $\delta$ :

$$
R(D)=\min _{P(\hat{X} \mid X)} I(X ; \hat{X})=1-h(\delta)
$$

- $E\left(d_{H}(X, \hat{X})\right) \leq \delta$.
- Single-letter relation between source and its quantized version

- Test Channel: $N \sim \operatorname{Be}(\delta)$, and + is addition modulo 2


## Point-to-point Data Compression (lossy)

Start with Binary Symmetric Source: X is IID Be(1/2)

- Wish to compress with Hamming distortion: $d_{H}(x, \hat{x})=1$ if $x \neq \hat{x}$ and equals 0 otherwise.
- Minimum Rate of Compression for a given distortion $\delta$ :

$$
R(D)=\min _{P(\hat{X} \mid X)} I(X ; \hat{X})=1-h(\delta)
$$

- $E\left(d_{H}(X, \hat{X})\right) \leq \delta$.
- Single-letter relation between source and its quantized version

- Test Channel: $N \sim B e(\delta)$, and + is addition modulo 2
- Achieved using Random, Infinite-dimensional-vector Quantization


## Point-to-point communication: Biased Source

Binary Source with bias (BBS) p: X is IID, $\mathrm{Be}(\mathrm{p})$

- Wish to compress with Hamming distortion


## Point-to-point communication: Biased Source

Binary Source with bias (BBS) p: X is IID, $\mathrm{Be}(\mathrm{p})$

- Wish to compress with Hamming distortion
- Minimum Rate of Compression for a given distortion $\delta$ :
- $R(D)=h(p)-h(\delta)$.


## Point-to-point communication: Biased Source

Binary Source with bias (BBS) p: X is IID, $\mathrm{Be}(\mathrm{p})$

- Wish to compress with Hamming distortion
- Minimum Rate of Compression for a given distortion $\delta$ :
- $R(D)=h(p)-h(\delta)$.

- $N \sim B e(\delta)$, and + is addition modulo 2
- Achieved using Random, Infinite-dimensional-vector Quantization


## Many-to-one transformation: Quantization



Set of all n-length sequences


3-bit quantization

- Sequences that get the same color are NEARBY
- $\hat{X}^{n}=f\left(X^{n}\right)$, i.e., deterministically related
- But $\hat{X}_{i}$ is related to $X_{i}$ probabilistically: $P\left(\hat{X}_{i} \mid X_{i}\right)$.


## Many-to-one transformation: Binning



Set of all n-length sequences


2-bit binning

- Sequences that get the same color are FAR APART


## More is Better

- More is thought be better in information theory and coding theory
- BOON of dimensionality: there is more space in higher dimensions


## More is Better

- More is thought be better in information theory and coding theory
- BOON of dimensionality: there is more space in higher dimensions
- Proven to be true for point-to-point communication


## More is Better

- More is thought be better in information theory and coding theory
- BOON of dimensionality: there is more space in higher dimensions
- Proven to be true for point-to-point communication
- A lot of effort in constructing codes of large block-lengths
- Even more effort in trying to encode and decode


## More is Better

- More is thought be better in information theory and coding theory
- BOON of dimensionality: there is more space in higher dimensions
- Proven to be true for point-to-point communication
- A lot of effort in constructing codes of large block-lengths
- Even more effort in trying to encode and decode
- Where else more is better?


## More is Better



## Four Basic Problems in Information Theory

- Multiple access channel: Ahlswede-Liao region, 71 (wireless uplink)
- Distributed source coding: Berger-Tung region, 77 (sensor networks)


## Four Basic Problems in Information Theory

- Multiple access channel: Ahlswede-Liao region, 71 (wireless uplink)
- Distributed source coding: Berger-Tung region, 77 (sensor networks)
- Broadcast channel: Marton's region, 79 (wirless downlink)
- Multiple description Coding: Zhang-Berger region, 87 (streaming)


## Four Basic Problems in Information Theory

- Multiple access channel: Ahlswede-Liao region, 71 (wireless uplink)
- Distributed source coding: Berger-Tung region, 77 (sensor networks)
- Broadcast channel: Marton's region, 79 (wirless downlink)
- Multiple description Coding: Zhang-Berger region, 87 (streaming)
- Till recently we did not know whether these regions are tight or not.


## Four Basic Problems in Information Theory

- Multiple access channel: Ahlswede-Liao region, 71 (wireless uplink)
- Distributed source coding: Berger-Tung region, 77 (sensor networks)
- Broadcast channel: Marton's region, 79 (wirless downlink)
- Multiple description Coding: Zhang-Berger region, 87 (streaming)
- Till recently we did not know whether these regions are tight or not.
- Wagner et al ['11] proved that Berger-Tung region is not tight using a continuity argument.


## Lossy Distributed Source Coding

- Compression of correlated sources in a distributed setting

- Restrict to reconstruction of one source with distortion


## Lossy Distributed Source Coding

- Compression of correlated sources in a distributed setting

- Restrict to reconstruction of one source with distortion
- Window into the world of network information theory


## Lossy Distributed Source Coding

- Compression of correlated sources in a distributed setting

- Restrict to reconstruction of one source with distortion
- Window into the world of network information theory
- Single-letter Achievable Rate Distortion Region [Berger-Tung 77]
- Independent, Random (unstructured), Infinite-dimensional quantization


## Lossy Distributed Source Coding

- Compression of correlated sources in a distributed setting

- Restrict to reconstruction of one source with distortion
- Window into the world of network information theory
- Single-letter Achievable Rate Distortion Region [Berger-Tung 77]
- Independent, Random (unstructured), Infinite-dimensional quantization
- Let $U_{i}$ denote the quantized version of $Y_{i}$
- Curse: Long Markov chain: $U_{1}-Y_{1}-Y_{2}-U_{2}$


## Berger Tung: Double Quantization

$$
\begin{aligned}
& Y_{1} \rightarrow \text { Quantizer } 1 \xrightarrow{\mathrm{U}_{1}} . \\
& \mathrm{Y}_{2} \rightarrow \text { Quantizer } 2 \xrightarrow{\mathrm{U}_{2}}
\end{aligned}
$$

## Berger Tung: Double Quantization

$$
\begin{aligned}
& Y_{1} \rightarrow \text { Quantizer } 1 \\
& \mathrm{U}_{1} \\
& \mathrm{Y}_{2} \rightarrow \text { Quantizer } 2 \\
& \mathrm{U}_{2}
\end{aligned}
$$

- Quantization Rate: $I\left(Y_{1} ; U_{1}\right)$ and $I\left(Y_{2} ; U_{2}\right)$.


## Berger Tung: Double Quantization

$$
\begin{aligned}
& \mathrm{Y}_{1} \rightarrow \text { Quantizer } 1 \xrightarrow{\mathrm{U}_{1}} \rightarrow \\
& \mathrm{Y}_{2} \rightarrow \text { Quantizer } 2 \\
& \mathrm{U}_{2}
\end{aligned}
$$

- Quantization Rate: $I\left(Y_{1} ; U_{1}\right)$ and $I\left(Y_{2} ; U_{2}\right)$.
- Sources are correlated $\Longrightarrow$ quantized vectors are correlated


## Berger Tung: Double Quantization



- Quantization Rate: $I\left(Y_{1} ; U_{1}\right)$ and $I\left(Y_{2} ; U_{2}\right)$.
- Sources are correlated $\Longrightarrow$ quantized vectors are correlated
- Bin the quantized vectors to exploit correlation
- Boon: rate rebate of $I\left(U_{1} ; U_{2}\right)$.


## Berger Tung: Double Quantization



- Quantization Rate: $I\left(Y_{1} ; U_{1}\right)$ and $I\left(Y_{2} ; U_{2}\right)$.
- Sources are correlated $\Longrightarrow$ quantized vectors are correlated
- Bin the quantized vectors to exploit correlation
- Boon: rate rebate of $I\left(U_{1} ; U_{2}\right)$.



## Berger Tung: Quantization + Binning



Set of all $n$-length sequences


3-bit quantization+2-bit binning

## Berger Tung: Quantization + Binning



Set of all n-length sequences


3-bit quantization+2-bit binning

- Total Rate: $I\left(Y_{1} ; U_{1}\right)+I\left(Y_{2} ; U_{2}\right)-I\left(U_{1} ; U_{2}\right)=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)$.


## Berger Tung: Quantization + Binning



Set of all n-length sequences


3-bit quantization+2-bit binning

- Total Rate: $I\left(Y_{1} ; U_{1}\right)+I\left(Y_{2} ; U_{2}\right)-I\left(U_{1} ; U_{2}\right)=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)$.
- BT: $R_{1}+R_{2}=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)$ optmized with $U_{1}-Y_{1}-Y_{2}-U_{2}$


## Berger Tung: Quantization + Binning



Set of all n-length sequences


3-bit quantization+2-bit binning

- Total Rate: $I\left(Y_{1} ; U_{1}\right)+I\left(Y_{2} ; U_{2}\right)-I\left(U_{1} ; U_{2}\right)=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)$.
- BT: $R_{1}+R_{2}=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)$ optmized with $U_{1}-Y_{1}-Y_{2}-U_{2}$
- Centralized: $R_{1}+R_{2}=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)$ optimized over everything


## Quantize + Bin

- Quantize+Bin is ubiquitous in communications, signal processing


## BT: Independent, Random, Infinite-dimensional quantizers

Why BT rate region is not optimal?

## BT: Independent, Random, Infinite-dimensional quantizers

Why BT rate region is not optimal?
Is it because of independent and random (unstructured) quantization?

## BT: Independent, Random, Infinite-dimensional quantizers

Why BT rate region is not optimal?
Is it because of independent and random (unstructured) quantization?

- What if we quantize the two sources using identical linear codes?


## BT: Independent, Random, Infinite-dimensional quantizers

Why BT rate region is not optimal?
Is it because of independent and random (unstructured) quantization?

- What if we quantize the two sources using identical linear codes?
- Lemma: If $Y_{1} \neq Y_{2}$, as $n \rightarrow \infty$, the two quantization noises become independent.


## BT: Independent, Random, Infinite-dimensional quantizers

Why BT rate region is not optimal?
Is it because of independent and random (unstructured) quantization?

- What if we quantize the two sources using identical linear codes?
- Lemma: If $Y_{1} \neq Y_{2}$, as $n \rightarrow \infty$, the two quantization noises become independent.
- So, as long as dimension (block-length) $\rightarrow \infty$, it does not matter whether the quantizers are
(i) independent or identical,
(ii) unstructured or linear.


## BT: Independent, Random, Infinite-dimensional quantizers

Why BT rate region is not optimal?
Is it because of independent and random (unstructured) quantization?

- What if we quantize the two sources using identical linear codes?
- Lemma: If $Y_{1} \neq Y_{2}$, as $n \rightarrow \infty$, the two quantization noises become independent.
- So, as long as dimension (block-length) $\rightarrow \infty$, it does not matter whether the quantizers are
(i) independent or identical,
(ii) unstructured or linear.
- You cannot escape the curse with the wand of linear codes.


## BT: Independent, random infinite-length quantizers

- As block-length becomes large, most volume is inside the walls
- infinitesimal perturbation will take you to the next voronoi region



## Quantize and Bin: Why BT rate region is not optimal?

- Is it because of infinite block-length quantization?


## Quantize and Bin: Why BT rate region is not optimal?

- Is it because of infinite block-length quantization?
- Answer: YES in the following sense.


## Quantize and Bin: Why BT rate region is not optimal?

- Is it because of infinite block-length quantization?
- Answer: YES in the following sense.
- When the quantizers are identical, for a fixed distortion:
- As block-length increases, the correlation between quantized versions becomes weaker


## Quantize and Bin: Why BT rate region is not optimal?

- Is it because of infinite block-length quantization?
- Answer: YES in the following sense.
- When the quantizers are identical, for a fixed distortion:
- As block-length increases, the correlation between quantized versions becomes weaker
- For example: $Y_{1}$ and $Y_{2}$ jointly Gaussian, distortion $=0.363$.


## Quantize and Bin: Why BT rate region is not optimal?

- Is it because of infinite block-length quantization?
- Answer: YES in the following sense.
- When the quantizers are identical, for a fixed distortion:
- As block-length increases, the correlation between quantized versions becomes weaker
- For example: $Y_{1}$ and $Y_{2}$ jointly Gaussian, distortion $=0.363$.



## Inverse Correlation Effect

- Correlation is inversely related to block-length for a fixed distortion


## Inverse Correlation Effect

- Correlation is inversely related to block-length for a fixed distortion

Finite-length quantizer is better than Infinite-length quantizer

## Inverse Correlation Effect

- Correlation is inversely related to block-length for a fixed distortion

Finite-length quantizer is better than Infinite-length quantizer

- Able to transfer the correlation from the sources to the quantized versions more efficiently,


## Inverse Correlation Effect

- Correlation is inversely related to block-length for a fixed distortion

Finite-length quantizer is better than Infinite-length quantizer

- Able to transfer the correlation from the sources to the quantized versions more efficiently,
- a.k.a free from the curse of long Markov chain


## Inverse Correlation Effect

- Correlation is inversely related to block-length for a fixed distortion

Finite-length quantizer is better than Infinite-length quantizer

- Able to transfer the correlation from the sources to the quantized versions more efficiently,
- a.k.a free from the curse of long Markov chain
- As block-length increases, the efficiency goes down, until you hit long Markov chain


## Inverse Correlation Effect

- Correlation is inversely related to block-length for a fixed distortion

Finite-length quantizer is better than Infinite-length quantizer

- Able to transfer the correlation from the sources to the quantized versions more efficiently,
- a.k.a free from the curse of long Markov chain
- As block-length increases, the efficiency goes down, until you hit long Markov chain
- Short block-length: Correlation Transfer Efficiency $\uparrow$, Source Representation Efficiency $\downarrow$


## Inverse Correlation Effect

Infinite-length quantizer is better than finite-length quantizer

- Large block-length: Correlation Transfer Efficiency $\downarrow$, Source Representation Efficiency $\uparrow$


## Inverse Correlation Effect

Infinite-length quantizer is better than finite-length quantizer

- Large block-length: Correlation Transfer Efficiency $\downarrow$, Source Representation Efficiency $\uparrow$
- There is a sweet-spot for the block-length where overall efficiency is maximum


## Inverse Correlation Effect

Infinite-length quantizer is better than finite-length quantizer

- Large block-length: Correlation Transfer Efficiency $\downarrow$, Source Representation Efficiency $\uparrow$
- There is a sweet-spot for the block-length where overall efficiency is maximum
- This is an artifact of quantize and bin strategy


## Common Information (Gacs-Korner-Witsenhausen)

- A random variable $X$ such that $X=f_{i}\left(Y_{i}\right)$ for $i \in\{1,2\}$ such that $H(X)>0$.


## Common Information (Gacs-Korner-Witsenhausen)

- A random variable $X$ such that $X=f_{i}\left(Y_{i}\right)$ for $i \in\{1,2\}$ such that $H(X)>0$.
- Example of CI: $Y_{1}=\left(X, \tilde{Y}_{1}\right), Y_{2}=\left(X, \tilde{Y}_{2}\right)$


## Common Information (Gacs-Korner-Witsenhausen)

- A random variable $X$ such that $X=f_{i}\left(Y_{i}\right)$ for $i \in\{1,2\}$ such that $H(X)>0$.
- Example of CI: $Y_{1}=\left(X, \tilde{Y}_{1}\right), Y_{2}=\left(X, \tilde{Y}_{2}\right)$
- Cl-based Coding [Wagner-Kelly-Altug 09]
- Quantize the Cl at both encoders using the same code.


## Common Information (Gacs-Korner-Witsenhausen)

- A random variable $X$ such that $X=f_{i}\left(Y_{i}\right)$ for $i \in\{1,2\}$ such that $H(X)>0$.
- Example of CI: $Y_{1}=\left(X, \tilde{Y}_{1}\right), Y_{2}=\left(X, \tilde{Y}_{2}\right)$
- Cl-based Coding [Wagner-Kelly-Altug 09]
- Quantize the Cl at both encoders using the same code.
- Encoders cooperate at sending the quantized version.


## Common Information (Gacs-Korner-Witsenhausen)

- A random variable $X$ such that $X=f_{i}\left(Y_{i}\right)$ for $i \in\{1,2\}$ such that $H(X)>0$.
- Example of CI: $Y_{1}=\left(X, \tilde{Y}_{1}\right), Y_{2}=\left(X, \tilde{Y}_{2}\right)$
- Cl-based Coding [Wagner-Kelly-Altug 09]
- Quantize the Cl at both encoders using the same code.
- Encoders cooperate at sending the quantized version.
- Treat the quantized version as side-information + BT strategy.
- Break the long Markov chain using Cl


## Common Information (Gacs-Korner-Witsenhausen)

- A random variable $X$ such that $X=f_{i}\left(Y_{i}\right)$ for $i \in\{1,2\}$ such that $H(X)>0$.
- Example of CI: $Y_{1}=\left(X, \tilde{Y}_{1}\right), Y_{2}=\left(X, \tilde{Y}_{2}\right)$
- Cl-based Coding [Wagner-Kelly-Altug 09]
- Quantize the Cl at both encoders using the same code.
- Encoders cooperate at sending the quantized version.
- Treat the quantized version as side-information + BT strategy.
- Break the long Markov chain using Cl
- Reduces to BT strategy when Cl is trivial


## Example [Wagner-Kelly-Altug 09]

- Let $Y_{1}=X+E$ and $Y_{2}=(X, Z)$. Where $X \sim \operatorname{Be}\left(\frac{1}{2}\right), E \sim \operatorname{Be}(\epsilon), Z \sim \operatorname{Be}(p)$.



## Example [Wagner-Kelly-Altug 09]

- Let $Y_{1}=X+E$ and $Y_{2}=(X, Z)$. Where $X \sim \operatorname{Be}\left(\frac{1}{2}\right), E \sim \operatorname{Be}(\epsilon), Z \sim \operatorname{Be}(p)$.

- If $\epsilon=0$ then $X$ is a Cl .


## Example [Wagner-Kelly-Altug 09]

- Let $Y_{1}=X+E$ and $Y_{2}=(X, Z)$. Where

$$
X \sim \operatorname{Be}\left(\frac{1}{2}\right), E \sim \operatorname{Be}(\epsilon), Z \sim \operatorname{Be}(p) .
$$



- If $\epsilon=0$ then $X$ is a Cl .
- The decoder wants to reconstruct $X+Z$ with distortion $D$.


## Cl is present: $\epsilon=0$

- Here is a block diagram of the Cl scheme: $\epsilon=0$

- Encoder 1: $X=W+N_{\delta}$


## Cl is present: $\epsilon=0$

- Here is a block diagram of the Cl scheme: $\epsilon=0$

- Encoder 1: $X=W+N_{\delta}$

$$
\Longrightarrow \quad X+Z=W+N_{\delta}+Z, \quad R_{1}=1-h_{b}(\delta)
$$

## Cl is present: $\epsilon=0$

- Here is a block diagram of the Cl scheme: $\epsilon=0$

- Encoder 1: $X=W+N_{\delta}$
$\Longrightarrow \quad X+Z=W+N_{\delta}+Z, \quad R_{1}=1-h_{b}(\delta)$
- Uncertainty at decoder: $N_{\delta}+Z$,


## Cl is present: $\epsilon=0$

- Here is a block diagram of the Cl scheme: $\epsilon=0$

- Encoder 1: $X=W+N_{\delta}$
$\Longrightarrow \quad X+Z=W+N_{\delta}+Z, \quad R_{1}=1-h_{b}(\delta)$
- Uncertainty at decoder: $N_{\delta}+Z$,
- Encoder 2: $N_{\delta}+Z=Q+N_{\delta_{1}}$


## Cl is present: $\epsilon=0$

- Here is a block diagram of the Cl scheme: $\epsilon=0$

- Encoder 1: $X=W+N_{\delta}$
$\Longrightarrow \quad X+Z=W+N_{\delta}+Z, \quad R_{1}=1-h_{b}(\delta)$
- Uncertainty at decoder: $N_{\delta}+Z$,
- Encoder 2: $N_{\delta}+Z=Q+N_{\delta_{1}} \Longrightarrow \quad R_{2}=h_{b}(\delta * p)-h_{b}\left(\delta_{1}\right)$,


## Cl is present: $\epsilon=0$

- Here is a block diagram of the Cl scheme: $\epsilon=0$

- Encoder 1: $X=W+N_{\delta}$
$\Longrightarrow \quad X+Z=W+N_{\delta}+Z, \quad R_{1}=1-h_{b}(\delta)$
- Uncertainty at decoder: $N_{\delta}+Z$,
- Encoder 2: $N_{\delta}+Z=Q+N_{\delta_{1}} \Longrightarrow \quad R_{2}=h_{b}(\delta * p)-h_{b}\left(\delta_{1}\right)$, $D=\delta_{1}$.


## Cl is absent: $\epsilon \neq 0$



- If $\epsilon \neq 0$ : Encoder 2 cannot reconstruct $\hat{W}$


## Cl is absent: $\epsilon \neq 0$



- If $\epsilon \neq 0$ : Encoder 2 cannot reconstruct $\hat{W}$
- Instead can only reconstruct $W$ : $\hat{W}-(X+E)-X-W$


## Cl is absent: $\epsilon \neq 0$



- If $\epsilon \neq 0$ : Encoder 2 cannot reconstruct $\hat{W}$
- Instead can only reconstruct $W$ : $\hat{W}-(X+E)-X-W$
- $\Longrightarrow$ discontinuity in $\left(R_{1}, R_{2}, D\right)$ as a function of $\epsilon$.


## Cl is absent: $\epsilon \neq 0$



- If $\epsilon \neq 0$ : Encoder 2 cannot reconstruct $\hat{W}$
- Instead can only reconstruct $W$ : $\hat{W}-(X+E)-X-W$
- $\Longrightarrow$ discontinuity in $\left(R_{1}, R_{2}, D\right)$ as a function of $\epsilon$.
- Actual rate distortion region (performance limit) is continuous in $\epsilon$


## New Result: Theorem

For the binary one-help-one problem, the following rate-distortion region is achievable for any positive integer $n$.

$$
\begin{align*}
& R_{1} \geq 1-h_{b}(\delta)+\theta_{n}  \tag{1}\\
& R_{2} \geq h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)  \tag{2}\\
& D_{2} \leq \delta_{1} *\left(\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right)} * \delta\right)\right) \tag{3}
\end{align*}
$$

## New Result: Theorem

For the binary one-help-one problem, the following rate-distortion region is achievable for any positive integer $n$.

$$
\begin{align*}
& R_{1} \geq 1-h_{b}(\delta)+\theta_{n}  \tag{1}\\
& R_{2} \geq h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)  \tag{2}\\
& D_{2} \leq \delta_{1} *\left(\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right)} * \delta\right)\right) \tag{3}
\end{align*}
$$

- This is a single-letter characterization
- Here $\theta_{n}=\frac{1}{2} \frac{\log n}{n}+O\left(\frac{1}{n}\right)$.


## New Result: Theorem

For the binary one-help-one problem, the following rate-distortion region is achievable for any positive integer $n$.

$$
\begin{align*}
& R_{1} \geq 1-h_{b}(\delta)+\theta_{n}  \tag{1}\\
& R_{2} \geq h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)  \tag{2}\\
& D_{2} \leq \delta_{1} *\left(\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right)} * \delta\right)\right) \tag{3}
\end{align*}
$$

- This is a single-letter characterization
- Here $\theta_{n}=\frac{1}{2} \frac{\log n}{n}+O\left(\frac{1}{n}\right)$.
- If $n \epsilon \ll 1$ then the distortion is close to $\delta_{1} *\left(n \epsilon\left(\delta+\frac{1}{n} * \delta\right)\right)$.


## New Result: Theorem

For the binary one-help-one problem, the following rate-distortion region is achievable for any positive integer $n$.

$$
\begin{align*}
& R_{1} \geq 1-h_{b}(\delta)+\theta_{n}  \tag{1}\\
& R_{2} \geq h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)  \tag{2}\\
& D_{2} \leq \delta_{1} *\left(\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right)} * \delta\right)\right) \tag{3}
\end{align*}
$$

- This is a single-letter characterization
- Here $\theta_{n}=\frac{1}{2} \frac{\log n}{n}+O\left(\frac{1}{n}\right)$.
- If $n \epsilon \ll 1$ then the distortion is close to $\delta_{1} *\left(n \epsilon\left(\delta+\frac{1}{n} * \delta\right)\right)$.
- The region is continuous in $\epsilon$ and contains the Cl scheme when $\epsilon=0$.


## New Result: Theorem

For the binary one-help-one problem, the following rate-distortion region is achievable for any positive integer $n$.

$$
\begin{align*}
& R_{1} \geq 1-h_{b}(\delta)+\theta_{n}  \tag{1}\\
& R_{2} \geq h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)  \tag{2}\\
& D_{2} \leq \delta_{1} *\left(\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right)} * \delta\right)\right) \tag{3}
\end{align*}
$$

- This is a single-letter characterization
- Here $\theta_{n}=\frac{1}{2} \frac{\log n}{n}+O\left(\frac{1}{n}\right)$.
- If $n \epsilon \ll 1$ then the distortion is close to $\delta_{1} *\left(n \epsilon\left(\delta+\frac{1}{n} * \delta\right)\right)$.
- The region is continuous in $\epsilon$ and contains the Cl scheme when $\epsilon=0$.
- To get this performance via BT approach, we need multi-letterization


## New Coding Approach

- Here is a block-diagram of the scheme:

- $n$ is finite and $m$ is infinitely large


## New Coding Approach

- Here is a block-diagram of the scheme:

- $n$ is finite and $m$ is infinitely large
- 3 components: $C_{f}^{(n)}, C_{r}^{(m)}$ and $\pi$.


## Specifics of Coding

- $C_{f}^{(n)}$ is an $n$-length code for quantizing a $B S S$ to a distortion $\delta$ with rate $R(n, \delta)=1-h_{b}(\delta)+\theta_{n}$. [Kostina-Verdu 12]


## Specifics of Coding

- $C_{f}^{(n)}$ is an $n$-length code for quantizing a $B S S$ to a distortion $\delta$ with rate $R(n, \delta)=1-h_{b}(\delta)+\theta_{n}$. [Kostina-Verdu 12]
- $C_{r}^{(m)}$ is an $m$-length code for quantizing a BBS $\sim(p * \delta)$ to distortion $\delta_{1}$, with rates approaching $h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)$. [Shannon 59]


## Specifics of Coding

- $C_{f}^{(n)}$ is an $n$-length code for quantizing a $B S S$ to a distortion $\delta$ with rate $R(n, \delta)=1-h_{b}(\delta)+\theta_{n}$. [Kostina-Verdu 12]
- $C_{r}^{(m)}$ is an $m$-length code for quantizing a BBS $\sim(p * \delta)$ to distortion $\delta_{1}$, with rates approaching $h_{b}(p * \delta)-h_{b}\left(\delta_{1}\right)$. [Shannon 59]
- Interleaver $\pi_{i} \in S_{n}, i \in[1: m]$


## Encoders

- Encoder 1:
- Upon receiving a sequence $(X+E)(1: m, 1: n)$ takes $V(i, 1: n)=\operatorname{argmin}_{c^{n} \in C_{n}^{f}} d_{h}\left(c^{n},(X+E)(i, 1: n)\right)$ transmits the index of $V(i, 1: n)$ in $C_{f}^{n}$.


## Encoders

- Encoder 1:
- Upon receiving a sequence $(X+E)(1: m, 1: n)$ takes $V(i, 1: n)=\operatorname{argmin}_{c^{n} \in C_{n}^{f}} d_{h}\left(c^{n},(X+E)(i, 1: n)\right)$ transmits the index of $V(i, 1: n)$ in $C_{f}^{n}$.
- Encoder 2:
- Upon receiving a sequence $X(1: m, 1: n)$ calculates $\hat{V}(i, 1: n)=\operatorname{argmin}_{c^{n} \in C_{n}^{f}} d_{h}\left(c^{n}, X(i, 1: n)\right)$.
- Calculates $S(i, 1: n)=(\hat{V}+X+Z)(i, 1: n)$.
- Let $\tilde{S}(i, 1: n)=\pi_{i}(S(i, 1: n))$. Quantizes each $\tilde{S}(1: m, j)$ using $C_{r}^{m}$ to get $\tilde{Q}(1: m, j)$.
- Transmits the index of $\tilde{Q}(1: m, j)$ in $C_{r}^{m}$.


## Observation

- Note that $\tilde{S}(1: m, j)$ is a DMS:



## Observation

- Note that $\tilde{S}(1: m, j)$ is a DMS:

- The distribution of $\tilde{S}(1: m, j)$ is $B e(p * \delta)$ :

$$
\begin{aligned}
& P(\tilde{S}(i, j)=1)=P\left(X\left(i, \pi_{i}(j)\right)+\hat{V}\left(i, \pi_{i}(j)\right)+Z\left(i, \pi_{i}(j)\right)=1\right) \\
& =p * P\left(X\left(i, \pi_{i}(j)\right)+\hat{V}\left(i, \pi_{i}(j)\right)=1\right) \\
& =p * \frac{1}{n} \sum_{j^{\prime}=1}^{n} E\left(w_{H}\left(X\left(i, j^{\prime}\right)+\hat{V}\left(i, j^{\prime}\right)\right)\right) \\
& =p * \delta
\end{aligned}
$$

## Decoder

- Decoder:
- Calculates $Q(i, 1: n)=\pi_{i}^{-1}(\tilde{Q}(i, 1: n))$.
- Declares $(Q+V)(1: m, 1: n)$ as the reconstruction.


## Decoder

- Decoder:
- Calculates $Q(i, 1: n)=\pi_{i}^{-1}(\tilde{Q}(i, 1: n))$.
- Declares $(Q+V)(1: m, 1: n)$ as the reconstruction.
- Calculating distortion:

$$
\begin{aligned}
D & =\frac{1}{m n} E\left\{d_{H}((X+Z)(1: m, 1: n),(Q+V)(1: m, 1: n))\right\} \\
& =\frac{1}{m n} E\left\{w_{H}((\hat{V}+V+T)(1: m, 1: n))\right\} \\
& =\left(\delta_{1} * \frac{1}{m n} E\left\{w_{H}((\hat{V}+V)(1: m, 1: n))\right\}\right)
\end{aligned}
$$

## Decoder

- Decoder:
- Calculates $Q(i, 1: n)=\pi_{i}^{-1}(\tilde{Q}(i, 1: n))$.
- Declares $(Q+V)(1: m, 1: n)$ as the reconstruction.
- Calculating distortion:

$$
\begin{aligned}
& D=\frac{1}{m n} E\left\{d_{H}((X+Z)(1: m, 1: n),(Q+V)(1: m, 1: n))\right\} \\
& =\frac{1}{m n} E\left\{w_{H}((\hat{V}+V+T)(1: m, 1: n))\right\} \\
& =\left(\delta_{1} * \frac{1}{m n} E\left\{w_{H}((\hat{V}+V)(1: m, 1: n))\right\}\right)
\end{aligned}
$$

- Note that $V(i, 1: n)=\hat{V}(i, 1: n)$ if $E(1: n)=0$.

$$
D=\left(\delta_{1} * \frac{1}{n} E\left\{w_{H}((\hat{V}+V)(1,1: n) \mid E(1,1: n) \neq 0)\right\} P(E(1,1: n) \neq 0)\right)
$$

## Decoder

- Simplifying the previous equations we can get:

$$
\left.D \leq \delta_{1} *\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right.} * \delta\right)\right)
$$

## Decoder

- Simplifying the previous equations we can get:

$$
\left.D \leq \delta_{1} *\left(1-(1-\epsilon)^{n}\right)\left(\delta+\frac{\epsilon}{\left(1-(1-\epsilon)^{n}\right.} * \delta\right)\right)
$$

## Theorem

The new rate-distortion region strictly contains the BT rate region

## Hamming Codes

- Using Hamming code of length $2^{r}-1$ :

$$
\begin{aligned}
& R_{1}=1-\frac{r}{2^{r}-1} \\
& R_{2}=h_{b}\left(\frac{1}{2^{r}} * p\right)-h_{b}\left(\delta_{1}\right) \\
& D \leq \delta_{1} *\left(1-(1-\epsilon)^{n}\right)\left(\frac{\epsilon}{\left(1-(1-\epsilon)^{2^{r}-1}\right)} * \frac{1}{2^{r}-1}+\frac{1}{2^{r}-1}\right)
\end{aligned}
$$

## Hamming Codes

- Using Hamming code of length $2^{r}-1$ :

$$
\begin{aligned}
& R_{1}=1-\frac{r}{2^{r}-1} \\
& R_{2}=h_{b}\left(\frac{1}{2^{r}} * p\right)-h_{b}\left(\delta_{1}\right) \\
& D \leq \delta_{1} *\left(1-(1-\epsilon)^{n}\right)\left(\frac{\epsilon}{\left(1-(1-\epsilon)^{2^{r}-1}\right)} * \frac{1}{2^{r}-1}+\frac{1}{2^{r}-1}\right)
\end{aligned}
$$

- A good scheme for BT seems to be to time-share between the following points to avoid double quantization.

$$
\begin{aligned}
& r_{1}=1, r_{2}=h_{b}(p)-h_{b}\left(\delta_{1}\right) \\
& {r_{1}^{\prime}}_{1}=0,{r^{\prime}}_{2}=1-h_{b}\left(\delta_{1}\right)
\end{aligned}
$$

## Hamming Codes

- Using Hamming code of length $2^{r}-1$ :

$$
\begin{aligned}
& R_{1}=1-\frac{r}{2^{r}-1} \\
& R_{2}=h_{b}\left(\frac{1}{2^{r}} * p\right)-h_{b}\left(\delta_{1}\right) \\
& D \leq \delta_{1} *\left(1-(1-\epsilon)^{n}\right)\left(\frac{\epsilon}{\left(1-(1-\epsilon)^{2^{r}-1}\right)} * \frac{1}{2^{r}-1}+\frac{1}{2^{r}-1}\right)
\end{aligned}
$$

- A good scheme for BT seems to be to time-share between the following points to avoid double quantization.

$$
\begin{aligned}
& r_{1}=1, r_{2}=h_{b}(p)-h_{b}\left(\delta_{1}\right) \\
& r^{\prime}{ }_{1}=0, r^{\prime}{ }_{2}=1-h_{b}\left(\delta_{1}\right)
\end{aligned}
$$

- Also the Cl scheme for $\epsilon=0$ gives an outer bound.


## Numerical Results

- Comparison between the three bounds: $\left(\delta_{1}=0.1, p=0.3, \epsilon=10^{-10}\right)$



## Conclusions

- As block-length of quantization is increased
- Correlation Transfer Efficiency decreases
- Source Representation Efficiency increases


## Conclusions

- As block-length of quantization is increased
- Correlation Transfer Efficiency decreases
- Source Representation Efficiency increases
- There is a sweet spot for block-length $n$ where overall efficiency is maximum


## Conclusions

- As block-length of quantization is increased
- Correlation Transfer Efficiency decreases
- Source Representation Efficiency increases
- There is a sweet spot for block-length $n$ where overall efficiency is maximum
- To get this performance in BT framework, we need multi-letterization ( $n$-letter)

