
Clayton Scott

EECS and Statistics

University of Michigan

Kernel Methods for Transfer Learning

Collaborators:

Gilles Blanchard, Gyemin Lee, Lloyd Stoolman



Transfer Learning in Flow Cytometry
Training data sets

Testing data set

Flow cytometry data



Classification



Probabilistic Framework



Classifiers



Learning from Data



7

Learning from Data

Task: construct a classifier using a training sample
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Kernel Methods

f̂λ = argmin
f∈H

1

n

n∑

i=1

�(f(Xi), Yi) + λ‖f‖
2
H

where

• H is a reproducing kernel Hilbert space

• �(t, y) = φ(yt) where φ is convex



Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space is a Hilbert spaceH whose
elements are functions f : X → R, and such that there exists a
function k : X × X → R satisfying

• k(·, x) ∈ H for every x

• for every f ∈ H and x ∈ X ,

f(x) = 〈f, k(·, x)〉H

(reproducing property)

Any k satisfying the above conditions is called a reproducing
kernel



Reproducing Kernel Hilbert Spaces

Useful facts about reproducing kernel Hilbert spaces:

• k is a reproducing kernel iff k is positive definite

• Every RKHS has a unique kernel

• Every positive definite kernel is the reproducing kernel of a
unique RKHS

• The set of functions

H0 =



f =

m∑

j=1

αjk(·, zj)





is dense in the RKHS associated with k



The Representer Theorem

Every solution of

min
f∈H

1

n

n∑

i=1

�(f(Xi), Yi) + λ‖f‖
2
H

has the form

f =
n∑

i=1

αik(·, Xi)

where αi ∈ R.



Transfer Learning in Flow Cytometry
Training data sets

Testing data set

Flow cytometry data



Applications

Application Feature Label

Flow cytometry Cell Cell type

ECG Heartbeat Abnormal heartbeat?

EEG EEG window Seizure imminent?

Microchip inspection Chip Defect?

…



Formal Setup

Testing data

Training data

Si = ((Xij , Yij))1≤j≤ni

(Xij , Yij)
iid
∼ P

(i)
XY for each i

P
(i)
XY

iid
∼ µ (distribution on distributions)

X = feature space (compact), Y = {−1, 1}

T = ((XT
j , Y

T
j ))1≤j≤nT

(XT
j , Y

T
j )

iid
∼ PTXY , Y Tj not observed

P TXY ∼ µ



Prediction function

• BX = distributions on X

• Map marginal distributions to classifiers

g : BX → (X → R)

• Equivalent represention:

f : BX × X → R

f(PX , x) := g(PX)(x)

• Classifier on “extended feature space” BX × X



Measuring Performance

• loss

�(ŷ, y) = loss of prediction value ŷ

when true label is y

• empirical risk on the test sample

Ê(f, T ) :=
1

nT

nT∑

i=1

�(f(P̂ TX , X
T
i ), Y

T
i ) ,

• generalization error

E(f) := EPT

XY
∼µE(XT ,Y T )∼PT

XY

[
�(f(P TX , X

T ), Y T )
]



Kernel-based Algorithm

Minimize empirical risk plus complexity penalty

RHKS framework

• k = kernel on BX × X

• Hk = RKHS

• “extended data”

X̃ij = (P̂
(i)
X , Xij) ∈ BX ×X

f̂λ = argmin
f∈H

k

1

N

N∑

i=1

Ê(f,Si) + λ‖f‖
2
H
k

= argmin
f∈H

k

1

N

N∑

i=1

1

ni

ni∑

j=1

�(f(X̃ij), Yij) + λ‖f‖
2
H
k



Implementation

Representer Theorem implies

Implementation

f̂λ(PX , x) =
N∑

i=1

ni∑

j=1

αijk((P̂
(i)
X , Xij), (PX , x))

• hinge loss =⇒ SVM packages

• logistic loss =⇒ kernel logistic regression algorithms

• etc.



Kernels

Product kernel:

k((P1, x1), (P2, x2)) = kP (P1, P2)kX(x1, x2)

Kernels on distributions:

• Universal kernels developed by Steinwart and Christmann (NIPS 2010)

• Embedding of distributions: Fix another kernel k′X on X and set

Ψ(P ) :=

∫
k′X(·, x)dP (x) ∈ Hk′

X

(related work: Sriperumbudur, Gretton, Fukumizu, Schölkopf, Lanck-
riet, JMLR 2011)

• Gaussian-like kernel

kP (P1, P2) := exp

{
−

1

2σ2P
‖Ψ(P1)−Ψ(P2)‖

2
H
k′

X

}



Analysis

Assumptions:

• kernels kX , kP are universal and bounded

• the loss � : R× Y → R is Lipschitz in its first variable, bounded

• all samples Si have the same size n

Theorem: With probability at least 1− δ,

sup
f∈B

k
(R)

∣∣∣∣∣
1

N

N∑

i=1

Ê(f, Si)− E(f)

∣∣∣∣∣ ≤ CR
(√

logN + log δ−1

n
+

√
log δ−1

N

)

Corollary: (Universal consistency) If N,n→∞ with N = O(nγ) for some
γ > 0, and λ = λ(N,n)→ 0 (but not too fast), then

E(f̂λ(N,n))→ inf
f :BX×X→R

E(f)

in probability.



Results

• Flow cytometry data with N = 35 patients

• Subsampled n = 5000 examples per patient

• leave-one-patient-out test error

• Comparison to a “vanilla” multi-task (MT) learning kernel

kτP (P1, P2) :=

{
1 if P1 = P2
τ if P1 �= P2

Kernel kP Test Losses vs. Wilcoxon
error proposed signed rank p

MT (τ = 0.01) 1.92 % 29/35 7 10−7

MT (τ = 0.5) 1.72 % 26/35 9 10−4

Pooling (τ = 1) 1.71 % 26/35 2.5 10−3

Proposed 1.67 % - -
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