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Big data getting bigger 

•  ARGUS-IS imager 
–  1.8 GP camera 
–  770 Gb/sec 
–  1M TB/day 

•  Currently 6B people
 access mobile phones 

•  Microelectrode array 
–  100 channels 
–  30 kHz 
–  2 TB/day 

(Baraniuk 2012) 
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Leveraging structure 

(Beal et al. 2006) 

Biological systems exploit structure for extreme efficiency 

DEAD FISH 
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Signal processing pipeline 
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Signal processing pipeline 

Linear	  subspace	   Sparse	  coefficients	   Manifold	  



Christopher J. Rozell Dynamical systems in sparse signals 

Signal processing pipeline 

[Elad, et al. 2010] 
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Signal processing pipeline 

ML 
MMSE 
MAP 

Numerical linear algebra 
Optimization 

Nonlinear approximation 

LPF/sinc interpolation 
Regularized least squares 
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Today’s plan: dynamics in the pipeline 

Neuroscience seminar: Friday 4pm, NCRC bldg 10, Rm G065 
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Today’s plan: dynamics in the pipeline 

•  Dynamic sparse signal models 
–  Stochastic filtering for sparse signals 

•  Structured compressive random matrices 
–  Short term memory in networks 

•  Inference using dynamical systems 
–  Ultra efficient high performance computing 

•  Measurement of dynamical system attractors 



Christopher J. Rozell Dynamical systems in sparse signals 

Today’s plan: dynamics in the pipeline 

•  Dynamic sparse signal models 
–  Stochastic filtering for sparse signals 

•  Structured compressive random matrices 
–  Short term memory in networks 

•  Inference using dynamical systems 
–  Ultra efficient high performance computing 

•  Measurement of dynamical system attractors 



Christopher J. Rozell Dynamical systems in sparse signals 

Static sparsity model   

•  Linear generative model: 

•  Causes are iid and sparse: 

•  Noise is Gaussian: 
•  Infer {ai} via MAP estimate called BPDN: 

•  Regularization parameter is inverse SNR: 
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Dynamic signal estimation 

•  Common setup: 

•  Hidden Markov model: 
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Dynamic filtering and Kalman 
•  Markov structure->incremental posterior computation 

–  Prior from prediction  
–  Likelihood from measurement 
–  xnew estimated from posterior 

•  Kalman filter-> (f,g) linear and (states,noise) Gaussian 

•  Norm kernel (P) propagates covariance  
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Applications and non-Gaussianity 

•  Applications in navigation, tracking, neuroscience 

•  Potential in feature tracking for computer vision 

•  Problem: frequently non-linear/non-Gaussian 
–  Extended KF linearizes system 
–  Particle filtering/unscented KF  

 propagate distribution samples 

•  Sparse states or innovations? 
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Current approaches 

•  Modify KF (e.g., restricted support, sparsify solution,
 propagate covariance) [Vaswani 2008; Carmi, et al. 2010] 

•  Direct coefficient transition modeling (e.g., MP or
 modified OMP) [Zachariah et al. 2012; Ziniel, et al. 2010] 

•  L1 penalty in optimization (BPDN dynamic filtering)
 [Charles, Asif, Romberg, & R. 2011; Vaswani 2010; Sejdinovic et al. 2010] 
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Inspiration 

•  Idea from static model: re-weighted l1 (RWL1) 
–  Gamma hyperprior on variances λi 

–  EM algorithm yields iterative re-weighted l1 

[Candès, et al. 2008; Garrigues & Olshausen 2010] 
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RWL1 dynamic filter idea 

•  RWL1-DF propagates second order statistics 
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RWL1-DF algorithm 

•  Main idea: RWL1 with variances from model prediction 

•  EM inference -> RWL1-DF: 

(Charles & R. 2013) 
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Propagating second order statistics 

•  Encode dynamic information in variances 
•  Sparsity model is directly integrated 
•  More robust to model errors 
•  Can leverage advances in L1 min algorithms 
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Video data 

•  Standard Foreman test video sequence (128x128) 
•  Measurements: compressed sensing setup with

 M=0.25*1282 measurements 
•  Assume states are sparse wavelet (synthesis)

 coefficients with f(x)=x  

•  Methods based on standard KF not possible due to
 matrix inverses over large state space 
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Lower steady-state recovery error 
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Lower steady-state recovery error 
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Future directions 

•  Learn system dynamics from data 

•  Track other types of low-dimensional structures 

•  Theoretical guarantees 

•  Applications in: 
–  computer vision (target tracking, learning physics models,

 imagination, etc.) 
–  computational neurorehabilitation of motor deficits 
–  remote sensing (superresolution of hyperspectral data) 
–  large scale electrophysiology data 
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Today’s plan: dynamics in the pipeline 

•  Dynamic sparse signal models 
–  Stochastic filtering for sparse signals 

•  Structured compressive random matrices 
–  Short term memory in networks 

•  Inference using dynamical systems 
–  Ultra efficient high performance computing 

•  Measurement of dynamical system attractors 
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Memory 

•  Much of our perceptual
 experience depends critically
 on memory and prediction 

•  What is the substrate for
 efficient memory? 



Christopher J. Rozell Dynamical systems in sparse signals 

Short-term sequence memory 

•  Many different types of memory 
–  Long-term memory -> synaptic plasticity 
–  Short-term memory -> network properties 

•  Sequence memory 
–  Phone numbers, repeated sensory patterns, … 

•  Focus today: short-term sequence memory 
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•  Exogenous time series s[n] drives a network of M nodes 

•  Can M nodes recover a signal of length N>M?   No. 
•  What if inputs s[n] are sparse in basis Ψ? 

Sensing with a network 

(Maass, et al. 2002; Jaeger & 
Haas 2004; Jaeger 2001; White 
et al. 2004; Ganguli et al. 2008) 

(Ganguli et al. 2010) 
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Compressed Sensing (CS) 

•  Signal acquisition framework: 
–  Undersampled: Ψ is iid random MxN with M=O(K log N) 

•  Sufficient condition: Restricted Isometry Property 
–  For all 2S-sparse signals x, we have RIP(2S,δ) if: 

–  Recovery via BPDN: 

–  Recovery guarantee: 

(Candès 2006) 
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Structured Matrices in CS 

•  Subsampled Fourier matrices 

•  Partial circulant matrices (with random probe) 

•  Block diagonal matrices 

•  Any RIP matrix can produce stable manifold embeddings 

(Rudelson and Vershynin, 2008) 

(Krahmer et al., 2012) 

(Yap, Eftekhari, Wakin, & R., 2014) 

(Yap, Wakin, & R., 2013; Krahmer  & Ward 2011; Baraniuk & Wakin 2009) 
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Memory capacity of finite length inputs 

•  Choose a construction for the network 
–  Random orthogonal connectivity matrix: 

•  Eigenvalues              drawn iid from unit circle 
•  Inputs weights: 
• Decompose:                   

–  For S-sparse signal in basis Ψ, δ, and failure prob η, if: 

–  Then with probability exceeding (1-η), RIP: 

(Charles, Yap, & R., 2014) 
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Proof sketch 

•  Since F is Vandermonde, proof follows very closely
 from the proof of RIP for subsampled DTFT matrices 

•  Proof sketch: 
–  Express RIP conditioning as a random variable 

–  Bound moments E((δS)p) using recent results for
 bounding expected supremum of random processes 

–  Use moment bounds to get tail bounds characterizing
 the RIP failure probability 

(Rauhut, 2010) 

(Rudelson & Vershynin, 2008) 
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Empirical recovery 
S
/M
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One man’s signal is another man’s noise 

•  Use RIP recovery guarantees to bound recovery error 

“signal” “noise” 
Choose this 
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Future directions 

•  Extensions to multiple inputs (sparsity and low rank) 

•  Applications in wireless sensor networks 

•  Applications in novel data acquisition systems 
–  Similar to compressive multiplexers that share ADCs 
–  Possible approach for high-density microelectrode arrays 
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Today’s plan: dynamics in the pipeline 

•  Dynamic sparse signal models 
–  Stochastic filtering for sparse signals 

•  Structured compressive random matrices 
–  Short term memory in networks 

•  Inference using dynamical systems 
–  Ultra efficient high performance computing 

•  Measurement of dynamical system attractors 
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Network solutions 
Activity level 

•  Many algorithms for using computers to solve 

•  Can a dynamical system efficiently solve it? 
•  Locally competitive algorithms (LCA) 

(R., Johnson, Baraniuk & Olshausen, 2008) 
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LCA dynamical system architecture 

•  Leaky integration 
•  Nonlinear activation 

•  Inhibition/excitation 

Computational primitives 
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Sparse approximation with LCAs 
•  System descends via warped gradient descent: 

•  With some assumptions on the non-linear function: 
–  Is globally asymptotically stable if E is strictly convex 
–  Converges to fixed point even with connected solutions 
–  Converges exponentially fast: MSE ≤ ke-ct 

•  In CS recovery, can establish stronger bounds 
–  No extraneous coefficients in support if M=O(K2 log N) 
–  Strong bounds on convergence rate if M=O(K log N) 

(Balavoine, Romberg & R., 2012; 
Balavoine, R. & Romberg, 2013a,b) 
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Many cost functions 

•  Also RWL1 and block L1 (non-overlapping blocks) 

(Charles, Garrigues & R., 2012) 
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Implementation in analog VLSI 

•  Implementation on reconfigurable analog hardware 

•  Sublinear scaling of convergence time with N 

(Shapero,Charles, R. &Hasler 2012;  Shapero, R. &Hasler 2012,2013; Shapero,Zhu, Hasler &R. 2014) 
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Future directions 

•  Biological vision models 
–  Simulated physiology experiments 
–  Predictions for large scale neural recordings 

•  Applications of LCA in silicon 
–  Computer vision on mobile devices 
–  Wireless communications 
–  Computer graphics 
–  Model predictive control 

•  New approaches combining 
–  Scalable mixed signal architectures 
–  Lessons from distributed optimization 
–  Tools from approximate computing 



Christopher J. Rozell Dynamical systems in sparse signals 
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Takens’ Embedding Theorem 

(Takens 1981; Sauer et al. 1991) 
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Stable Reconstruction 
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Stable Takens’ Embeddings? 

•  RIP works because pairwise distances are stable 
•  Stable embedding extended to manifolds 

–  Unlike typical CS, get one measurement M times 
•  Linear system and linear measurements: 

•  If M>2(2d-1)vε-1, then Takens’ embedding is stable
 with conditioning δ0+ε 

Dimension: d Speed: v 

(Yap & R., 2011) 
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Simulations 

•  d = 3,               ,     

•    
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Observations 

•  M doesn’t depend directly on N 
•  Possible that M>N 

–  Would be crazy in standard CS, but reasonable here 
•  Plateau in conditioning: limit to improvement with M 

–  Real effect and not a proof artifact 
–  δ0 depends on system and interaction with measurements 
–  Only eliminated for systems that fill state space and

 measurements that observe them evenly 

•  Combine with results on manifold embeddings to get
 filtering for dimensionality reduction 

•  Extension can be derived for nonlinear systems 
(Yap, Eftekhari, Wakin & R., in preparation) 

(Yap & R., in preparation) 
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Conclusions 

•  Value from: 
–  Biological motivation 
–  Intersection of dynamical systems with signal processing 

•  Other directions: 
–  Modeling biological vision 
–  Computer vision, kernel embeddings and interactive

 machine learning 
–  New sensors for neuroscience and personal health 
–  New approaches to mixed signal ICs for optimization 
–  Neuromodulation and computational therapeutics (PD) 
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More information 

crozell@gatech.edu 

http://users.ece.gatech.edu/~crozell 


