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What this talk is NOT about

Controlling of a plant from a distance through a communication link

Communication

Observations

Control

Controller

Plant
Link
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Instead, we are interested in

A) Viewing point-to-point communication as a Control problem

Communication

Communication

Feedback

Transmitter/Receiver
Base Station

Channel

Channel

Forward

Hub

The act of transmitting a signal (partially) controls the overall
communication system, with the hope of bringing it to a “desirable” state
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B) Viewing multi-agent communications as a Control problem

Communication

Tx/Rx 1

Tx/Rx 2

Channel

Base Station

Hub

Multiple agents (partially) control a communication network to bring it to
a state beneficial for all (cooperatively/competitively)
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C) More subtle: Viewing off-line optimization problems relevant to
Information theory as control problems, e.g., Shannon capacity

C = sup
{PXt |Xt−1 ,Yt−1 (·|·,·)}t

1
T

T

∑
t=1

I(Xt∧Yt|Y t−1)

Only connection to Communications is the problem origin.

No clear connection to Control either.
Where is the controller? where is the plant? what is the
observation/control action?
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Connections between Communication and Control

Whenever there is feedback there is an intimate relation between
Communication and Control

One possible classification of problems
1 Use Control techniques to design transmission schemes that achieve

general performance measures (e.g., real-time coding1 → examples
A,B)

2 Use Control techniques to design transmission schemes that achieve
certain information-theoretic-inspired measures (e.g., capacity, error
exponents2 → examples A,B)

3 Use Control techniques to evaluate information-theoretic quantities
(e.g., capacity, error exponents3 → example C)

1[Walrand and Varaiya, 1983, Mahajan and Teneketzis, 2009]
2[Horstein, 1963, Schalkwijk and Kailath, 1966, Shayevitz and Feder, 2008,

Bae and Anastasopoulos, 2012]
3[Chen and Berger, 2005, Tatikonda and Mitter, 2009, Kavcic et al., 2009,

Bae and Anastasopoulos, 2010]
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Connections between Communication and Control

Another possible classification of problems
1 Problems involving a single controller (e.g., point-to-point

transmission)
2 Problems involving multiple controllers (e.g., multi-user transmission)

a) Agents act as members of a team trying to achieve a common goal
b) Agents act strategically having individual goals (games)

Generally, dynamic problems with multiple agents and/or strategic
interaction are more difficult: no standard solution methodology

In this presentation we will discuss centralized/decentralized
sequential team problems, and a sequential problem with strategic
interaction (game)
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Overview

1 Point-to-point channels with memory and noiseless feedback

2 Multiple access channel with noiseless feedback

3 Cooperative communications in relay networks
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Point-to-point channels with memory and noiseless feedback

Background: DMC with noiseless feedback

DMC

D

W Xt

ft(·)
Yt Ŵ

d(·)

Yt−1

Information message W ∈ {1,2, . . . ,2nR}
Transmitted symbols Xt ∈X , t = 1,2, . . . ,n

Received symbols Yt ∈ Y , t = 1,2, . . . ,n

Discrete-memoryless channel (DMC) defined by Q(yt|xt)

Message estimate Ŵ ∈W

Encoding functions Xt = ft(W,Y t−1), t = 1,2, . . . ,n

Decoding function Ŵ = d(Yn)
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Point-to-point channels with memory and noiseless feedback

Background: DMC with noiseless feedback

DMC

D

W Xt

ft(·)
Yt Ŵ

d(·)

Yt−1

Fact[Shannon]: feedback does not increase capacity!

Capacity given by an off-line, static, single-letter optimization problem
over distributions on X

C = sup
PX(·)

I(Xt∧Yt),

with mutual information evaluated as

I(Xt∧Yt)
def
= ∑

x
∑
y

PX(x)Q(y|x) log
Q(y|x)

∑x′ PX(x′)Q(y|x′)
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Point-to-point channels with memory and noiseless feedback

Channel with memory and noiseless feedback

D

Discrete
Channel

W Xt

ft(·)
Yt

St St

Ŵ
d(·)

Yt−1

St−1

Information message W ∈ {1,2, . . . ,2nR}
Transmitted symbols Xt ∈X , t = 1,2, . . . ,n
Channel state St ∈S , t = 1,2, . . . ,n
Received symbols Yt ∈ Y , t = 1,2, . . . ,n and channel state (perfect Rx
CSI)

Finite state channel (FSC) defined by Qy(yt|xt,st), Qs(st+1|st,xt)

Message estimate Ŵ ∈W
Encoding functions Xt = ft(W,Y t−1,St−1), t = 1,2, . . . ,n (delayed Tx
CSI)

Decoding function Ŵ = d(Yn,Sn)
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Point-to-point channels with memory and noiseless feedback

FSC capacity

Capacity of this channel is the result of the following off-line optimization
problem4 over infinitely many conditional distributions on X

C = sup
{PXt |Xt−1 ,S

t−1 ,Yt−1}∞
t=1

liminf
T→∞

1
T

T

∑
t=1

I(Xt,Xt−1∧St,Yt|St−1,Y t−1).

Observe: PXt|Xt−1,St−1,Y t−1 ∈X ×S t−1×Y t−1→P(X ), so its
domain increases with t

Q: How can we utilize Control theory to solve this problem?

4[Tatikonda and Mitter, 2009, Bae and Anastasopoulos, 2010]
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Point-to-point channels with memory and noiseless feedback

Parenthesis: Markov Decision Processes in 5 mins

A Markov Decision Process (MDP) is a random process with:
State St ∈S ,
Control action Ut ∈U ,
Instantaneous reward Rt ∈R,
defined by the following dynamics

P(St+1|St,Ut,Rt) = Qs(St+1|St,Ut)

P(Rt|St,Ut,Rt−1) = Qr(Rt|St,Ut)

Ut = gt(St)

Problem: Design the sequence of mappings g = {gt}t to maximize the
average reward

J(g) def
= Eg{∑

t
Rt}
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Point-to-point channels with memory and noiseless feedback

Parenthesis: Markov Decision Processes in 5 mins

A single controler observes perfectly the state and takes an action
(centralized control with perfect state observation)

Solution: Optimal control policy is Markov, i.e.,

Ut = g∗t (S
t) = g∗t (St)

Interpretation: If state is perfectly observed by single controller,
then it perfectly summarizes the entire history of observations
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Point-to-point channels with memory and noiseless feedback

Parenthesis: MDPs and POMDPs in 5 mins

A Partially Observed MDP (POMDP) is a random process with:
State St ∈S ,
Observation Yt ∈ Y ,
Control action Ut ∈U ,
Instantaneous reward Rt ∈R,
defined by the following dynamics

P(St+1|St,Ut,Rt,Y t) = Qs(St+1|St,Ut)

P(Yt|St,Ut−1,Rt−1,Y t−1) = Qy(Yt|St)

P(Rt|St,Ut,Rt−1,Y t) = Qr(Rt|St,Ut)

Ut = gt(Y t)

Problem: Design the sequence of mappings g = {gt}t to maximize the
average reward

Jg def
= Eg{∑

t
Rt}
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Point-to-point channels with memory and noiseless feedback

Parenthesis: MDPs and POMDPs in 5 mins

Solution: Optimal control policy has the structure,

Ut = g∗t (Y
t) = g∗t (Πt)

where Πt ∈P(S ) and Πt(s)
def
= Pr(St = s|Ut−1,Y t) ∀s ∈S

Interpretation: If state is imperfectly observed by controller, then
the posterior belief of the state, Πt, perfectly summarizes the entire
history of observations

Takeaway: MDPs/POMDPs are useful tools when we want to
summarize the dependence of previous observations in our present
decisions
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Point-to-point channels with memory and noiseless feedback

Back to our problem: FSC capacity

C = sup
{PXt |Xt−1 ,S

t−1 ,Yt−1}∞
t=1

liminf
T→∞

1
T

T

∑
t=1

I(Xt,Xt−1∧St,Yt|St−1,Y t−1).

Think of C as the total average reward of some “fictitious” MDP
with appropriate states, actions, instantaneous rewards, etc

Hint:

I(Xt,Xt−1∧St,Yt|St−1,Y t−1) =

= E{log
P(St,Yt|Xt,Xt−1,St−1,Y t−1)

P(St,Yt|St−1,Y t−1)
}

= E{log
Qy(Yt|St,Xt)Qs(St|St−1,Xt−1)

∑xt ,xt−1 Qy(Yt|St,xt)Qs(St|St−1,xt−1)P(xt|xt−1,St−1,Y t−1)P(xt−1|St−1,Y t−1)
}
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Point-to-point channels with memory and noiseless feedback

Back to our problem: FSC capacity

Instantaneous reward depends on

a) some current variables, e.g., St−1,St,Xt−1,Xt,Yt

b) the input distribution P(xt|xt−1,St−1,Y t−1)

c) the quantity P(xt−1|St−1,Y t−1)

Define the Control action Ut ∈X →P(X ) (conditional distribution
of Xt given Xt−1)

Allow Ut to be a deterministic function of St−1,Y t−1,
Ut = gt(St−1,Y t−1)

Meaning:
Ut(xt−1)(·) = gt(St−1,Y t−1)(xt−1)(·) = P(Xt = ·|Xt−1 = xt−1,St−1,Y t−1)
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Point-to-point channels with memory and noiseless feedback

FSC capacity

Further define the r.v. (information state) Θt ∈P(X ) with

Θt(x)
def
= Pr(Xt = x|St,Y t), ∀x ∈X

Average instantaneous reward becomes

I(Xt,Xt−1∧St,Yt|St−1,Y t−1) =

= E{log
Qy(Yt|St,Xt)Qs(St|St−1,Xt−1)

∑xt,xt−1
Qy(Yt|St,xt)Qs(St|St−1,xt−1)Ut(xt−1)(xt)Θt−1(xt−1)

}

Observe: dependence on St−1,Y t−1 is “hidden” in the generation of
Ut = gt(St−1,Y t−1) and the evolution of Θt−1
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Point-to-point channels with memory and noiseless feedback

FSC capacity

Theorem ([Bae and Anastasopoulos, 2010])

The original optimization problem is equivalent to an MDP with

State {(St−1,Θt−1)}t

Control action Ut

Markov policies are optimal, i.e., optimal actions can be of the form

Ut = g∗t (St−1,Θt−1)⇔ P∗Xt|Xt−1,St−1,Y t−1 = P∗Xt|Xt−1,St−1,Θt−1

Capacity is now simplified to a single-letter expression

C = sup
PXt |Xt−1 ,St−1 ,Θt−1

I(Xt,Xt−1∧St,Yt|St−1,Θt−1)
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Point-to-point channels with memory and noiseless feedback

Lessons learned

Complex optimization problems in Information theory can be
translated to simple centralized control problems

Starting point: some multi-letter capacity expression

Methodology: appropriately define a control system to unveil an
MDP/POMDP

These ideas can also help in designing actual on-line
capacity-achieving transmission schemes (not in this talk)
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Multiple access channel with noiseless feedback

Overview

1 Point-to-point channels with memory and noiseless feedback

2 Multiple access channel with noiseless feedback

3 Cooperative communications in relay networks
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Multiple access channel with noiseless feedback

System model: the information theoretic setup

D

D
M

-M
A

C

D

W 1

W 2

X1
t

X2
t

f1
t (·)

f2
t (·)

Yt (Ŵ 1, Ŵ 2)
d(·)

Yt−1

Yt−1

Messages W i ∈ {1,2, . . . ,2nRi}, i = 1,2
Transmitted symbols Xi

t ∈X i, i = 1,2, t = 1,2, . . . ,n
Received symbols Yt ∈ Y , t = 1,2, . . . ,n
Discrete-memoryless MAC (DM-MAC) Q(yt|x1

t ,x
2
t )

Message estimates (Ŵ1,Ŵ2) ∈W 1×W 2

Encoding functions Xi
t = f i

t (W
i,Y t−1), i = 1,2, t = 1,2, . . . ,n

Decoding function (Ŵ1,Ŵ2) = d(Yn)
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Multiple access channel with noiseless feedback

NLF-MAC capacity

Feedback provides an enlargement of capacity region for the
MAC [Gaarder and Wolf, 1975, Cover and Leung, 1981,
Ozarow, 1984, Bross and Lapidoth, 2005,
Venkataramanan and Pradhan, 2009]

For the general NLF-MAC the capacity is not known as a single-letter
expression!

Multi-letter expression was developed by [Kramer, 2003]
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Multiple access channel with noiseless feedback

NLF-MAC capacity: multi-letter expression

Fact ([Kramer, 2003], [Salehi, 1978])

The problem of evaluating the NLF-MAC capacity region is equivalent to
solving the following optimization problem for every λ = (λ1,λ2,λ3)≥ 0

Jλ = sup lim
T→∞

1
T

T

∑
t=1

{
λ1I(X1

t ∧Yt|X2,t,Y t−1) +λ2I(X2
t ∧Yt|X1,t,Y t−1)

+λ3I(X1
t ,X

2
t ∧Yt|Y t−1)

}
,

and the supremum is over all input distributions of the form

{P(X1
t |X1,t−1,Y t−1), P(X2

t |X2,t−1,Y t−1)}t
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Multiple access channel with noiseless feedback

Why is the NLF-MAC capacity still an open problem?

Three main difficulties

1 The optimal input distributions on Xi
t depend on entire history Xi,t−1

and Y t−1

2 The optimization problem involves two controllers with different
observations (decentralized control!)

3 The per-stage rewards (mutual info expressions) are complicated
functions of the involved random variables

Claim: we can address the first two of the above three difficulties

Solve a slightly different problem: real-time communication over the
NLF-MAC
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Multiple access channel with noiseless feedback

System model: real-time communication

D

D
M

-M
A

C

D

W 1

W 2

X1
t

X2
t

f1
t (·)

f2
t (·)

Yt (Ŵ 1
t , Ŵ

2
t )

dt(·)

Yt−1

Yt−1

Same model as before, except

Message estimates for each time t, (Ŵ1
t ,Ŵ

2
t ) ∈W 1×W 2

Decoding functions (Ŵ1
t ,Ŵ

2
t ) = dt(Y t), t = 1,2, . . . ,n

Instantaneous reward function ρt(W1,W2,Ŵ1
t ,Ŵ

2
t )

Find a set of encoding/decoding functions g def
= {f 1

t , f
2
t ,dt}t that

maximize

J(g) = Eg{ lim
T→∞

1
T

T

∑
t=1

ρt(W1,W2,Ŵ1
t ,Ŵ

2
t )},
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Multiple access channel with noiseless feedback

Problem statement: discussion

Many reasonable choices for reward functions ρt(·), e.g.,

ρt(W1,W2,Ŵ1
t ,Ŵ

2
t ) = 1W1=Ŵ1

t and W2=Ŵ2
t
⇒

Eρt(W1,W2,Ŵ1
t ,Ŵ

2
t ) = Pr(W1 = Ŵ1

t and W2 6= Ŵ2
t )

Focus on structural properties of the communication system that are
common regardless of these choices.

Salient features of the problem:
1 Domain of encoding functions Xi

t = f i
t (W

i,Y t−1) increases with time.
2 Existence of common information at encoders (Y t−1 at time t) and

private information (W i)
3 Decentralized, non-classical information structure (this is not a

MDP/POMDP-like problem!)
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Multiple access channel with noiseless feedback

Introduction of pre-encoder5

Equivalent encoder description:
Each user’s transmission Xi

t = f i
t (W

i,Y t−1) can be thought of as a
two-stage process

1 Based on available feedback Y t−1 select encoding functions

Ei
t : W i→X i, i = 1,2,

through a pre-encoder mapping

(E1
t ,E

2
t ) = ht(Y t−1).

2 Generate transmitted signals by evaluating the encoding functions at
W i, i.e.,

Xi
t = Ei

t(W
i), i = 1,2.

5[Walrand and Varaiya, 1983, Nayyar and Teneketzis, 2008]
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Multiple access channel with noiseless feedback

Introduction of pre-encoder

D

D

D
M

-M
A

C

W 1

W 2

X1
t

X2
t

Yt (Ŵ 1
t , Ŵ

2
t )

dt(·)

Yt−1

Yt−1

ht(·)

ht(·)

E1
t

E2
t

E1
t (·)

E2
t (·)

Decentralization of information is imposed by design (ht only uses the
common information Y t−1 available to both encoders)

Both encoders can evaluate each-other’s encoding functions through
(E1

t ,E
2
t ) = ht(Y t−1) (can be thought of as a fictitious coordinator)
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Multiple access channel with noiseless feedback

Transforming to a centralized control problem

DD
M

-M
A

C

W 1

W 2

X1
t

X2
t

Yt (Ŵ 1
t , Ŵ

2
t )

dt(·)
Yt−1

ht(·)
E1

t

E2
t

E1
t (·)

E2
t (·)

The control problem boils down to selecting encoding functions
(E1

t ,E
2
t ) = ht(Y t−1). Generation of Xi

t is a “dumb” function evaluation
Xi

t = Ei
t(W

i)

New equivalent design g def
= {f 1

t , f
2
t ,dt}t⇒ g̃ def

= {ht,dt}t

Above transformation still suffers from increasing domain Y t−1 of the
pre-encoder ht, i.e., (E1

t ,E
2
t ) = ht(Y t−1).
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Multiple access channel with noiseless feedback

Introduction of information state

We would like to summarize Y t−1 in a quantity (state) with time
invariant domain

Related attempts:
1 Introduction of auxiliary variables in information theory (e.g.,

[Cover and Leung, 1981, Bross and Lapidoth, 2005])
2 Form a graph describing the correlation structure of the messages after

receiving Y t−1 [Venkataramanan and Pradhan, 2009]

A more direct approach: define the random quantities

Πt ∈P(W 1×W 2), t = 0,1,2, . . .

as
Πt(w1,w2)

def
= Pr(W1 = w1,W2 = w2|Y t),

i.e., the posterior distribution of the message pair given the
observation.
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Multiple access channel with noiseless feedback

Introduction of information state

Lemma

1 The quantity Πt can be recursively updated as

Πt = Φ(Πt−1,E1
t ,E

2
t ,Yt), t = 1,2, . . .

2 (Πt)t is a controlled Markov process with control action (E1
t ,E

2
t )

3 The optimal decoder function at time t is only a function of Πt

(Ŵ1
t ,Ŵ

2
t ) = d∗t (Y

t) = d∗t (Πt)

4 The average instantaneous costs are functions of Πt−1,E1
t ,E

2
t , i.e.,

E{ρt(W1,W2,Ŵ1
t ,Ŵ

2
t )}= E{Ψt(Πt−1,E1

t ,E
2
t )}.

where Ψt are known functions.
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Multiple access channel with noiseless feedback

Main structural result

Theorem

The optimal communication system for the NLF-MAC consists of

1 Encoders of the form Xi
t = Ei

t(W
i), i = 1,2, where

(E1
t ,E

2
t ) = ht(Πt−1)

2 A receiver that generates message estimates as

(Ŵ1
t ,Ŵ

2
t ) = dt(Πt),

where dt is a known function.

3 The optimal ht can be determined as the solution of a fix-point
equation (dynamic program)

Achilleas Anastasopoulos anastas@umich.edu (U of Michigan)Problems in the intersection of Information theory and ControlDec 5, 2013 36 / 53



Multiple access channel with noiseless feedback

Equivalent optimal communication system

D

D

D
M

-M
A

C

W 1

W 2

X1
t

X2
t

Yt (Ŵ 1
t , Ŵ

2
t )

Yt−1

Yt−1

E1
t

E2
t

E1
t (·)

E2
t (·)

ht(Πt−1)

ht(Πt−1)

Πt

Πt−1

Πt−1

Φ(·)

Φ(·)

Φ(·) dt(Πt)
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Cooperative communications in relay networks

Overview

1 Point-to-point channels with memory and noiseless feedback

2 Multiple access channel with noiseless feedback

3 Cooperative communications in relay networks
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Cooperative communications in relay networks

Single-relay network

Xt
1

Xt
2

E13

E12

E23

Y
t

p

q

1

2 Relay

Source

3 Destination
0/ACK/NACK=

Bernoulli arrivals at Source (w.p. p) and at Relay (w.p. q)

Packets waiting at Source’s and Relay’s queues Xt = (X1
t ,X

2
t ) ∈ N×N

Actions U1
t ∈U 1 def

= {0,E13,E12}, U2
t ∈U 2 def

= {0,E23}
Simple collision model. Feedback Yt ∈ { /0,ACK,NACK}
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Cooperative communications in relay networks

Single-relay network

Xt
1

Xt
2

E13

E12

E23

Y
t

p

q

1

2 Relay

Source

3 Destination
0/ACK/NACK=

Instantaneous costs are functions of energy and “delay”

Ci
t = ρ

i(Xi
t ,U

i
t) (e.g., = Xi

t +Ui
t), i = 1,2

Reasonable assumptions: E12 +E23 < E13, p+q < 1, units either
receive or transmit
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Cooperative communications in relay networks

Three scenaria of interest: Scenario A

Centralized control of queues with perfect observation

(U1
t ,U

2
t ) = ft(X1,t,X2,t,Y t−1)

Find a set of policies f def
= {ft}t that minimize

J(f ) = Ef {∑
t

ρ
1(X1

t ,U
1
t )+ρ

2(X2
t ,U

2
t )}

Solution: Centralized stochastic control problem. Can be formulated
as an MDP. (U1

t ,U
2
t ) = f ∗t (X

1
t ,X

2
t )
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Cooperative communications in relay networks

Three scenaria of interest: Scenario B

Decentralized control of queues: each agent i observes only his own
queue length Xi

t and both agents have a common goal (team problem)

Ui
t = f i

t (X
i,t,Y t−1), i = 1,2

Find a set of policies f def
= (f 1

t , f
2
t )t that minimize

J(f ) = Ef {∑
t

ρ
1(X1

t ,U
1
t )+ρ

2(X2
t ,U

2
t )},

Salient features of the problem:
1 Domain of control mappings Ui

t = f i
t (X

1,t,Y t−1) increases with time.
2 Presence of common information (Y t−1 at time t) and private

information (Xi,t at time t for agent i)
3 Decentralized, non-classical information structure (this is not a

MDP/POMDP-like problem!)
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Cooperative communications in relay networks

Structural results for the team problem

Lemma ([Vasal and Anastasopoulos, 2012])

1 Knowledge of Y t−1 and Ui,t−1 reveals Ut−1 = (U1,t−1,U2,t−1), so Ut−1

is common knowledge (Y t−1 is not needed further)

Ui
t = f i

t (X
i,t,Ut−1), i = 1,2

2 Optimal policy depends only on the current private state Xi
t

Ui
t = f i

t (X
i
t ,U

t−1), i = 1,2

Still we have not addressed the decentralization issue and the expanding
domain of f i

t issue.
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Cooperative communications in relay networks

Introduction of pre-encoder6

Equivalent controller description:
Each agent’s decision Ui

t = f i
t (X

i
t ,U

t−1) can be thought of as a two-stage
process

1 Based on common info Ut−1 select “prescription” functions
Γi

t : N→U i, i = 1,2 through the pre-encoder mapping

(Γ1
t ,Γ

2
t ) = ht(Ut−1)

2 The actions Ui
t are determined by evaluating Γi

t at the private
information Xi

t , i.e.,

Ui
t = Γ

i
t(X

i
t), i = 1,2

6[Walrand and Varaiya, 1983, Nayyar and Teneketzis, 2008]
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Cooperative communications in relay networks

Transformation to a centralized problem

X1
t

X1
t

X2
t

X2
t

f1
t (·)

f2
t (·)

ht(·)

U1
t

U1
t

U2
t

U2
t

Ut−1Ut−1

Γ1
t

Γ2
t

Γ1
t (X

1
t )

Γ2
t (X

2
t )

Generation of Ui
t is a “dumb” function evaluation Ui

t = Γi
t(X

i
t)

The control problem boils down to selecting prescription functions
h def
= {ht}t,

Both agents can evaluate each-other’s prescription functions through
(Γ1

t ,Γ
2
t ) = ht(Ut−1) (can be thought of as a fictitious controller)

The decentralized control problem has been transformed to a
centralized control problem

Last issue to address: increasing domain U t−1 of the pre-encoder
mappings ht.
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Cooperative communications in relay networks

Introduction of information state

We would like to summarize Ut−1 in a quantity (state) with time
invariant domain

Define the random quantities

Πt ∈P(N×N), t = 0,1,2, . . .

as
Πt(x1

t ,x
2
t )

def
= P(X1

t = x1
t ,X

2
t = x2

t |Ut−1)

i.e., the posterior distribution of the queue lengths given the
observation.
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Cooperative communications in relay networks

Main structural result

Theorem ([Vasal and Anastasopoulos, 2012])

The original decentralized control problem is equivalent to an MDP with

State Πt

Control actions Γt
def
= (Γ1

t ,Γ
2
t )

Instantaneous costs E{ρ1
t (X

1
t ,U

1
t )+ρ2

t (X
2
t ,U

2
t )|Πt,Γt}

Markov policies are optimal, i.e., optimal actions can be of the form

Γt = h∗t (Πt) ⇒ Ui
t = f i∗

t (Πt,Xi
t)

It turns out there is a further simplification: instead of joint posterior
distributions, we can use the two marginals! A general version of this
result in [Nayyar et al., 2011]
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Cooperative communications in relay networks

Three scenaria of interest: Scenario C

The Source/Relay act strategically: they want to minimize their own
average costs over the given time horizon

Ji(f ) = Ef {∑
t

ρ
i(Xi

t ,U
i
t)}, i = 1,2

Enlarge action space for Relay (to allow acceptance/rejection of
Source packet)

U2
t ∈U 2 = {0a,0r,E23}

One can study the resulting dynamic game and find Nash/sub-game
perfect equilibria

Unfortunately the equilibria of this game do not coincide with the
optimal centralized solution of scenario A! (a.k.a., price of anarchy)
Example: if optimal centralized action was (E12,0a) this can never be
a NE, because Relay is better off playing 0r (reject packet from
source)
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Cooperative communications in relay networks

Incentivizing cooperation

Our approach: Devise a protocol that provides incentives to
Source/Relay so that the resulting dynamic game has equilibria that
coincide with the solutions of the optimal centralized problem
(Scenario A)

Introduce a state/action-dependent monetary transfer c(Xt,Ut)
between agents

ρ̂
1(Xt,Ut) = ρ

1(X1
t ,U

1
t )+ c(Xt,Ut)

ρ̂
2(Xt,Ut) = ρ

2(X2
t ,U

2
t )− c(Xt,Ut)

Observe: the total societal cost is the same as in the centralized
problem

ρ̂
1(Xt,Ut)+ ρ̂

2(Xt,Ut) = ρ
1(X1

t ,U
1
t )+ρ

2(X2
t ,U

2
t )
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Cooperative communications in relay networks

Incentivizing cooperation: basic result

Important assumption: users know each others cost functions ρ̂ i

(strategic behaviour does not manifest itself in desire for
privacy/untrouthful revelation of cost structure)

Theorem ([Vasal and Anastasopoulos, 2013])

There exist monetary transfers c(·, ·) such that the unique Nash (sub-game
perfect) equilibrium of the resulting dynamic game is exactly the optimal
solution of the centralized control problem

Implication: Source and Relay are incentivized to to behave in a way
that coincides with the optimal centralized solution
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Cooperative communications in relay networks

Conclusions

A number of communications problems can be viewed as
centralized/decentralized control systems

Using ideas from Control we can derive structural results and simplify
the solution of these problems

Can handle: dynamics; cooperation (team problems); and to some
extent competition (games)

Still a lot of open problems in this area

Capacity-achieving / Error exponent-achieving actual communication
systems (single/multi-user)
Single-letter capacity for MAC with feedback...
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Cooperative communications in relay networks

Open problem: Capacity of Multiple Access Channel with
noiseless feedback

D

D
M

-M
A

C

D

W 1

W 2

X1
t

X2
t

f1
t (·)

f2
t (·)

Yt (Ŵ 1, Ŵ 2)
d(·)

Yt−1

Yt−1

Messages W i ∈ {1,2, . . . ,2nRi}, i = 1,2
Transmitted symbols Xi

t ∈X i, i = 1,2, t = 1,2, . . . ,n
Received symbols Yt ∈ Y , t = 1,2, . . . ,n
Discrete-memoryless MAC (DM-MAC) Q(yt|x1

t ,x
2
t )

Message estimates (Ŵ1,Ŵ2) ∈W 1×W 2

Encoding functions Xi
t = f i

t (W
i,Y t−1), i = 1,2, t = 1,2, . . . ,n

Decoding function (Ŵ1,Ŵ2) = d(Yn)
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Thank you!
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