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Field gathering:   
Sampling, Encoding, Transporting, Reconstructing!
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Field-Gathering Wireless Sensor Network!

!   Sensors sample a field in two-dimʼl region at discrete sequence of times.  !
!   Each sensor source encodes its time-sequence of samples. !

This requires distributed lossy source coding.!
!   Communication network conveys bits to collector. !

!   Decoder at collector reconstructs snapshots of field (not just at sensor locations). !
!   We focus here on performance of source coding, not communication network. !
!   Competing Goals:  minimize !

–  rate  =  avg. number of bits per unit area per snapshot !
–  MSE distortion,   integrated over entire region!
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Centralized Coding!

Distributed Coding!
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Principal Goals and Questions!
!   Goal: design encoders and decoder to minimize coding rate subject to MSE 

distortion being at most target value  d. !
coding rate   =   bits/unit-area/time step !

! !=        sampling rate      x    coding rate per sample!
! !      (sensors/unit area)  x    (bits/sensor/time step)!

!   For a given random field model  X,  class of coding schemes  C,  sampling rate  
S,  and target distortion  d,  the coding rate per sample can be as small as the 
operational rate-distortion function  RX,C,S(d).   !

!   Hence, given  X,  C,  S,  d,  coding rate can be as small as    !
S  x  RX,C,S(d)  !

!   Goal:  For different code classes  C,  find limit of  S  x  RX,C,S(d)  for large  S.!

!   Question:  Like which of the following does  S  x  RX,C,S(d)  behave?!

 S  S  S 
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Simplify to 1-dimensional, continuous-time signals!
!   Not so much theory is known for source coding for continuous-time 

sources, even in 1-dimension !
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Four Classes of Lossy Source Codes  
to be Used with High-Rate Sampling !

Weʼll analyze the following classes for stationary, Gaussian, continuous-time 
sources!

!   Transform + VQ  !
(centralized & optimal)!

!   Scalar quantization + entropy-rate coding:  !
(centralized or distributed, no transform, suboptimal)!

!   Distributed VQ: !
(no transform, suboptimal)!

!   Transform + scalar quantization:    !
(centralized, suboptimal)!
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Ideas Leading to a Conjecture!
!   For continuous-time source!

–  Best performance of lossy source codes is given by Shannon rate-distortion 
function  Rsh(d).!

–  For Gaussian source, a parametric expression for Rsh(d)  is known (Kolmogorov).!
–  Performance as good as Rsh(d) can be attained (to within ε) by sampling at very 

high rate, coding samples, and reconstructing cont.-time signal. !

!   For discrete-time (sampled) source!
–  Best rate-distortion performance with distributed coding is not known, except for 

two Gaussian sources. !
–  Uniform scalar quantization plus entropy-rate coding has performance close to 

Rsh(d) for any discrete-time source.!
–  Entropy-rate coding can be done in distributed fashion with as small rate as 

centralized coding. (Slepian-Wolf coding)!

!   Conjecture:  uniform scalar quantization + distributed entropy-rate coding is 
distributed coding system that works well for cont-time source with high sampling 
rate (performance might be close to optimal). !
(Idea:  entropy-rate coding will exploit strong sample dependences to mitigate 
large sampling rate.)!
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Ideas Leading to a Conjecture!
!   For continuous-time source!

–  Best performance of lossy source codes is given by Shannon rate-distortion 
function  Rsh(d).!

–  For Gaussian source, a parametric expression for Rsh(d)  is known (Kolmogorov).!
–  Performance as good as Rsh(d) can be attained (to within ε) by sampling at very 

high rate, coding samples, and reconstructing cont.-time signal. !

!   For discrete-time (sampled) source!
–  Best rate-distortion performance with distributed coding is not known, except for 

two Gaussian sources. !
–  Uniform scalar quantization plus entropy-rate coding has performance close to 

Rsh(d) for any discrete-time source.!
–  Entropy-rate coding can be done in distributed fashion with as small rate as 

centralized coding. (Slepian-Wolf coding)!

!   Conjecture:  uniform scalar quantization + distributed entropy-rate coding is 
distributed coding system that works well for cont-time source with high sampling 
rate (performance might be close to optimal). !
(Idea:  entropy-rate coding will exploit strong sample dependences to mitigate 
large sampling rate.)!
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Four Strategies For Lossy Source Coding  
Based on High-Rate Sampling !

Weʼll analyze the following for stationary, Gaussian, continuous-time sources!

!   Transform + VQ  !
(centralized & optimal)!

!   Scalar quantization + entropy-rate coding:  !
(centralized or distributed, no transform, suboptimal)!

!   Distributed VQ: !
(no transform, suboptimal)!

!   Transform + scalar quantization:    !
(centralized, suboptimal)!
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Review: Lossy Source Coding in Discrete-Time!

!   Code:   c  =  encoder & decoder  (e.g. block code)!
!   Performance  =  rate & MSE distortion!

–  R(c)  =  # bits/sample!

–    !

!   Operational rate-distortion function ORDF for class of codes C!
–  RC(d)  =  least rate of any c  in C with D(c) ≤ d!

!   Shannon rate-distortion theory:  if C includes all block codes with all blocklengths !

–                                                             !

!   Example:  IID Gaussian !

!   High resolution theory:   when d  small!

where  ηC,X  depends on class of codes and source statistics [Bennett, Zador].  !
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ORDF: Block Codes & DT Gaussian Source!
!   With orthogonal transform!

!   Using optimal codes with distortions di!

where λi = e. val. of cov. matrix KM of  X!

!   Minimize over d1,…,dM ≥ 0  s.t.!
to find there exists   d’  s.t.!

 di = min {d’,  λi} ,  all  i,  !
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!   With orthogonal transform!

!   Using optimal codes with distortions di!

where λi = e. val. of cov. matrix KM of  X!

!   Minimize over d1,…,dM ≥ 0  s.t.!
to find there exists   d’  s.t.!

di = min {d’,  λi} ,  all  i,  !

ORDF: Block Codes & DT Gaussian Source!
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where  Φ(Ω)  is power spect. density  
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Review: Lossy Source Coding in Continuous-Time!

!   Code:   c  =  encoder & decoder  (e.g. block code)!
!   Performance  =  rate & MSE distortion!

–  R(c)  =  # bits/second!

–    !

!   Operational rate-distortion function ORDF for class of codes C!
–  RC(d)  =  least rate of any c in C  with D(c) ≤ d!
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ORDF: CT Gaussian Source!
!   Sample at N samples/sec!
!   When N  large,!

D  ≈  distortion in decoded samples!
R  =  R(c)  x  N    bits/sec!

!   Take limit as N è ∞  of   !

!   Change variables and use!

where  S(ω)  is power spectral density of X(t).!
!   To get inverse water pouring formulas:!

! ! !    ! ! !                [Kolmogorov `56, Berger `71]!
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Summary and Interpretaton!

         distortion profile!
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Examples!

! !           S(ω) ! ! !                 R(d)!

bandlimited!

exponential        e-|ω|!

spectrum!

Gauss-Markov       !

!   Heavier tailed spectrum  ⇒  larger  R(d)  at small  d.!
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Summary!
!   For coding with transform and vector quantization.  !

!   Probably the middle one. !!
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Ideas Leading to a Conjecture!
!   For continuous-time source!

–  Best performance of lossy source codes is given by Shannon rate-distortion 
function  Rsh(d).!

–  For Gaussian source, a parametric expression for Rsh(d)  is known (Kolmogorov).!
–  Performance as good as Rsh(d) can be attained (to within ε) by sampling at very 

high rate, coding samples, and reconstructing cont.-time signal. !

!   For discrete-time (sampled) source!
–  Best rate-distortion performance with distributed coding is not known, except for 

two Gaussian sources. !
–  Uniform scalar quantization plus entropy-rate coding has performance close to 

Rsh(d) for any discrete-time source.!
–  Entropy-rate coding can be done in distributed fashion with as small rate as 

centralized coding. (Slepian-Wolf coding)!

!   Conjecture:  uniform scalar quantization + distributed entropy-rate coding is 
distributed coding system that works well for cont-time source with large sampling 
rate (performance might be close to optimal). !
(Idea:  entropy-rate coding will exploit strong sample dependence to mitigate 
large sampling rate.)!
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Four Strategies For Lossy Source Coding  
Based on High-Rate Sampling !

Weʼll analyze the following for stationary, Gaussian, continuous-time sources!

!   Transform + VQ  !
(centralized & optimal)!

!   Scalar quantization + entropy-rate coding:  !
(centralized or distributed, no transform, suboptimal)!

!   Distributed VQ: !
(no transform, suboptimal)!

!   Transform + scalar quantization:    !
(centralized, suboptimal)!
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Review:   Centralized and Distributed Entropy-Rate 
Coding for Discrete-Time Source!

!   Entropy-Rate Coding (ERC)!
–  The lowest rate with which a discrete-stationary source can be lossless 

encoded  (for example with block-to-variable-length codes or conditional 
codes)  its entropy-rate!

!   Example:  stationary Markov source      H∞  =  H( X2 | X1 )!

!   ERC can be done in a distributed fashion at the same rate!    [Slepian-Wolf `73]!
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Uniform Scalar Quantization (USQ) with ERC!
!   Assume small step size  Δ	



!   Distortion:      !

!   Rate:!

!   For a stationary, discrete-time source, !
the ORDF of USQ with ERC is!

!   With distributed ERC,  USQ + ERC !
becomes distributed coding system. !
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Ideas Leading to a Conjecture!
!   For continuous-time source!

–  Best performance of lossy source codes is given by Shannon rate-distortion 
function  Rsh(d).!

–  For Gaussian source, a parametric expression for Rsh(d)  is known (Kolmogorov).!
–  Performance as good as Rsh(d) can be attained (to within ε) by sampling at very 

high rate, coding samples, and reconstructing cont.-time signal. !

!   For discrete-time (sampled) source!
–  Best rate-distortion performance with distributed coding is not known, except for 

two Gaussian sources. !
–  Uniform scalar quantization plus entropy-rate coding has performance close to 

Rsh(d) for any discrete-time source.!
–  Entropy-rate coding can be done in distributed fashion with as small rate as 

centralized coding. (Slepian-Wolf coding)!

!   Conjecture:  uniform scalar quantization + distributed entropy-rate coding is 
distributed coding system that works well for cont-time source with large sampling 
rate (performance might be close to optimal). !
(Idea:  entropy-rate coding will exploit strong sample dependence to mitigate 
large sampling rate.)!
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!   Suppose we sample with rate  N,  quantize,  entropy-rate code, and 
reconstruct cont-time signal.!
–  D  ≅  MSE of quantizer on samples;  not affected by sampling rate!
–  R  =  N  x  R(c)     bits/sec!

 ≅  N  x  H∞(N)     (entropy-rate is a function of sampling rate) !

!   Theorem 1:   [Marco-DN 2009]!
For any stationary source and quantizer!

!   Proof sketch:   ( recall Ii is index produced by quantizer in response to  Xi ) 
for  any  L,  !

The Good News!
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The Bad News … Conjecture is False!
!   Theorem 2:   [Marco-DN 2009]!

For virtually any stationary source and quantizer!
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Key Observation1!

!   S  =  location of 1st threshold crossing in [0,1];  S = 2  if no crossing.!

!   H(S ) = ∞,   since  S  is rand. variable with a continuous component.!

!   From quantizer indices I1,…,IN ,  can make estimate  SN  of  S  s.t.!

         !                        with high probability!

!   This implies    H(SN ) → ∞.!
!   Also!    H(I1,…,IN ) ≥ H(SN ),    since  SN    is a function of  I1,…,IN  !

!   Thus!

1Courtesy of Bruce Hajek!
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Another Explanation!
!   R  =    N  x  R(c)!

     ≅   N  x  ( Rsh,N(d) + 0.255 )!

     =   N  x  Rsh,N(d)   +  N x 0.255!

    è  Rsh(d) + ∞!

!   The weakness of this argument is that  R(c)  is small when  N  is large, whereas 
the high resolution approximation used is generally valid only when rate is large. !
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Summary!
!   Bad news from Theorem 2:   For scalar quantization and S-W distributed 

lossless coding,    !

   N RN(d)  → ∞     !

!   With identical scalar quantizers,  when sensors are dense,  entropy coding 
cannot sufficiently exploit increased correlation to mitigate increased number 
of sensors!

!   N.B.:  It is not that field gathering with identical scalar quantizers is infeasible.  
But with such, there is a finite best sampling density.!
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At What Rate Does  N H∞(N) → ∞ ?  !

!   Theorem: [Marco-DN 2010]  For unif. scalar quant. with step size  Δ,  infinitely 
many levels and statʼry Gaussian N(0,σ2) source with autocorr. func. ρ(τ),!

! ! ! !!

!where!

!   Examples:  When  N  is large,  !
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Why Does Scalar Quantization Perform So Poorly 
With Dense Sensors?!

!   Is it a flaw of all distributed source coding schemes?!

!   Or just a flaw of scalar quantization based schemes?!

!   Consider Distributed Vector Quantization (VQ)!

!   Kashyap et al.  [2005]!
–  Showed that for a stationary, Gaussian source and ideal distributed lossy 

coding, N RN(d)  remains finite as N increases.!

!   Pradhan & DN [2006,2013] !

–  Made a similar analysis.!

!   Note:  VQ dimension must increase with sampling rate N.!

this one!



32!

Four Strategies For Lossy Source Coding  
Based on High-Rate Sampling !

Weʼll analyze the following for stationary, Gaussian, continuous-time sources!

!   Transform + VQ  !
(centralized & optimal)!

!   Scalar quantization + entropy-rate coding:  !
(centralized or distributed, no transform, suboptimal)!

!   Distributed VQ: !
(no transform, suboptimal)!

!   Transform + scalar quantization:    !
(centralized, suboptimal)!
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Distributed Vector Quantization!

!   M sensors,  1/N  apart in spatial interval  [0, M/N]!

!   Spatial sampling rate = N!
!   For sampled source,  RDVQ(M,d)  known only for  M=2 Gaussian!
!sources [Wagner, et al. 2007]!

!   Kashyap et al. [05] and Pradhan-DN [06,10] applied Berger-Tung!
!bound [77] to obtain upper bounds to RDVQ(M,d) . !
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Berger-Tung Bound for Distributed VQ!

!   Lower bound to least rate of distributed encoding of M  sources with MSE d :!

!where “inf” is over test channels with  MSE ≤ D.!

!Has same form as M-th-order Shannon rate-distortion function, except !
–  Components of test channel are conditionally independent given source 

inputs!

–  In determining MSE, the test channel output Y1...YM is followed by an 
optimal estimator for inputs  X1...XM   from source.!

  

€ 

RDVQ(M,d ) ≥ RBT (M,d ) = inf
p

1
M Ip( X1...XM ;Y1...YM )

  

€ 

p( y1,...,yM | x1,...xM ) = p( yi | xi )
i=1

M
∏
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Applying Berger-Tung and  Kuhn-Tucker!
!   Choose test channel:!

!with  Ziʼs IID,  N(0,θ)!

!   Use Kuhn-Tucker:!

!where  λ1,…,λM are the eigenvalues of 
covariance matrix of  X1…XM!

  

€ 

RBT ,θ =
1
M

1
2 log2

λi
θ

+1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

M
∑

DBT ,θ =
1
M

λiθ
λi + θi=1

M
∑

	
  	
  	
  	
    

€ 

Yi =
1

1+θ
Xi + Zi( ), 	
  	
  i =1,...,M

  

€ 

RSh,θ =
1
M max 1

2 log2
λi
θ
,0⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

M
∑

DSh,θ =
1
M min λi ,θ{ }
i=1

M
∑

for centralized VQ	



in comparison 
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Take limit as M è∞!
!   Begin with !

!   Let M → ∞!

    

€ 

RBT,θ→
1

2π
1
2 log2

Φ(Ω)
θ

+1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−π

π
∫ dΩ

DBT,θ→
1

2π
Φ(Ω)θ
Φ(Ω) + θ−π

π
∫ dΩ

  

€ 

RBT ,θ =
1
M

1
2 log2

λi
θ

+1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

M
∑

DBT ,θ =
1
M

λiθ
λi + θi=1

M
∑

    

€ 

Rsh,θ →
1

2π max 1
2 log2

Φ(Ω)
θ
,0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ −π

π
∫ dΩ

DSh,θ→
1

2π min Φ(Ω),θ{ }
−π

π
∫ dΩ

  

€ 

RSh,θ =
1
M max 1

2 log2
λi
θ
,0⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

M
∑

DSh,θ =
1
M min λi ,θ{ }
i=1

M
∑

for centralized VQ	
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Let Sampling Rate N → ∞!
!   Change variables -- let  ω = ΩN!

!   Let sampling rate N → ∞;   let  φ = θN;  then   Φ(ω/N) / N → S(ω)  as  N → ∞!

!   This upper bound to optimal performance of distributed coding coding might 
be tight.!

      

€ 

NRBT ,θ →RBT ,θ =
1

2π
1
2 log2

S(ω)
θ +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−∞

∞
∫ dω

DBT ,θ →DBT ,θ =
1

2π
S(ω)θ
S(ω) + θ−∞

∞
∫ dω

    

€ 

RBT,θ →
1

2π
1
2 log2

Φ( ω /N )/N
θ / N

+1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−πN

πN
∫

1
N
dω

DBT,θ →
1

2π
Φ(ω / N )θ
Φ(ω / N ) + θ−πN

πN
∫

1
N
dω
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Comparison!
Distributed Coding!

(attainable rate)!
Centralized Coding!

(optimal rate)!

  

€ 

RSh,θ =
1

2π max 1
2 log2

S(ω)
θ ,0⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ −∞

∞
∫ dω

DSh,θ =
1

2π min S(ω),φ{ }
−∞

∞
∫ dω

distributed coding 
cannot use transform, 
and so cannot have 

sharp cutoff 
bandlimiting.	



	
  	
    

€ 

S(ω)θ
S(ω)+θ

Distortion Profiles:	



	
  	
  	
  	
  

€ 

min S(ω),φ{ }

    

€ 

RBT ,θ =
1

2π
1
2 log2

S(ω)
θ +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−∞

∞
∫ dω

DBT ,θ =
1

2π
S(ω)θ
S(ω) + θ−∞

∞
∫ dω
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Example!

!   Source -- stationary, Gauss-Markov,   !

  

€ 

ρ( τ) = e−|τ|, S(ω) = 2
1+ω2

Distributed Coding!
(attainable rate)!

Centralized Coding!
(optimal rate)!

  

€ 

RBT (d ) =
1

2ln2
1
d
−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 d  = 0.1!=  6.5 bits/m	

 =  5.1 bits/m	



  

€ 

RSh(d ) ≅
1

2ln2
0.81
d

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   for smalld

S(ω)	





40!

Example!

!   Source -- stationary, flat bandlimited   !

	
  	
  	
  	
    

€ 

S(ω)=
π/ωo , |ω|≤ωo

0 , else

⎧ 
⎨ 
⎩ 

Distributed Coding!
(attainable rate)!

Centralized Coding!
(optimal rate)!

d = 0.1!= 1.7 bits/m	

 = 1.7 bits/m	



  

€ 

RBT (d ) =
ωo
2π log2

1
d   

€ 

RSh (d ) =
ωo
2π log2

1
d

S(ω)	
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Summary!
!   For coding with distributed vector quantization.  !

!   Probably the middle one. !!

   
   

   
   

ra
te
!

density N!    
   

   
   

ra
te
!

density N!

   
   

   
 ra

te
!

density N!
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Are Scalar Quantizers Always Bad  
with Dense Samples?!

!   Not always!!
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Four Strategies For Lossy Source Coding  
Based on High-Rate Sampling !

Weʼll analyze the following for stationary, Gaussian, continuous-time sources!

!   Transform + VQ  !
(centralized & optimal)!

!   Scalar quantization + entropy-rate coding:  !
(centralized or distributed, no transform, suboptimal)!

!   Distributed VQ: !
(no transform, suboptimal)!

!   Transform + scalar quantization:    !
(centralized, suboptimal)!
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Transform, scalar quantization, entropy coding!

!   Proceed as before ...!
!   Sampling rate N rate over [0,∞)!
!   M-dimensional KLT produces M 

indep. Gaussian coefʼs with 
variances equal to eigenvalʼs of 
covar. matrix of  X1, X2, ... , XM:!

    	


!   Independently scalar quantize 

and entropy code each type of 
transform coefficient, instead of 
optimally VQ encoding.!

!   Optimize the rate allocation for 
coefficients  r1, r2, ..., rM !

!   Take M to infinity.	


!   Take N to infinity.!

KLT KLT KLT KLT KLT

SQ

bits

1/NM

r1
r2 rM

SQ SQ SQ

  

€ 

λ1
(M ) , ..., λM(M )
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Transform, scalar quantization, entropy coding!

!   Rate:!

!   Distortion:!

!   Let  R(d)  denote ORDF for!
!scalar quantizing with entropy !
!coding a unit variance Gaussian variable, !
!Assume   R(d)  is convex.!

!   Then for i th coef. !

!   Use Kuhn-Tucker theory to optimize  diʻs. !

  

€ 

R = 1
M ri
i=1

M
∑

  

€ 

D = 1
M dii=1

M
∑

	
  	
  	
  	
  

€ 

ri = R
di
λ i
(M)

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

D!

R(D)!
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Transform, scalar quantization, entropy coding!
!   Given  φ < 0,  Kuhn-Tucker gives 	



	

 	

 	

      di  = λi Dʼ(φλi)	



	

where  Dʼ(.)  is the inverse of the derivative of R(.) 	


!   Substituting this gives optimal rate-distortion pairs, parameterized by  φ	



!   Dimension M → ∞!

	
  	
  	
  	
    

€ 

RTr ,φ =
1
M R(Dʹ′(φλ i

(M) ))
i=1

M
∑

	
  	
  	
  	
    

€ 

DTr ,φ =
1
M λ i

(M) min{1,Dʹ′(φλ i
(M) )}

i=1

M
∑

	
  	
    

€ 

RTr ,φ →
1

2π R(Dʹ′(φΦ(Ω)))
−π

π
∫ dΩ

	
  	
  	
  	
      

€ 

DTr ,φ →
1

2π min{1,Dʹ′(φΦ(Ω) )}
−π

π
∫ dΩ



47!

Transform, scalar quantization, entropy coding!
!   Change variables -- let  ω = ΩN!

!   Sampling rate  N → ∞, let  φ = θN,   Φ(ω /N)/N → S (ω)  as  N →∞!

	
  	
    

€ 

RTr ,φ →
1

2π R(Dʹ′(φΦ(ω/N)))
−πN

πN
∫

1
Ndω

	
  	
  	
  	
      

€ 

DTr ,φ →
1

2π min{1,Dʹ′(φΦ(ω/ N) )}
−πN

πN
∫

1
N dω

	
  	
  	
  	
    

€ 

NR → RTr ,θ =
1

2π R Dʹ′ S(ω)
θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−∞

−∞
∫ dω

	
  	
  	
  	
    

€ 

D → DTr ,θ =
1

2π S(ω)min 1,Dʹ′ S(ω)
θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ −∞

−∞
∫ dω
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Transform, scalar quantization, entropy coding!
!   To repeat!

!   Since these are finite, scalar quantization does not lead to catastrophic 
performance, provided it is preceded by a transform.!

!   Note:  If  R(.)  is replaced by Shannon rate-distortion function for Gaussian 
samples, the above reduces to Shannon rate-distortion function for 
continuous-time Gaussian source.!

!   [Pradhan-DN, 2007,13]!

	
  	
  	
  	
    

€ 

RTr,θ =
1

2π R(Dʹ′ S(ω)
θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−∞

−∞
∫ dω

	
  	
  	
  	
    

€ 

DTr,θ =
1

2π S(ω) min 1,Dʹ′ S(ω)
θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ −∞

−∞
∫ dω
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Why Does Transform Coding With Scalar 
Quantization Not Suffer Catastrophically Bad 

Performance?!

!   Without transform, scalar quant. + ent. coding has rate!

      !         RN(d)  ≈  Rsh,N(d) + O(1)!

 ! !R  ≈  N RN(d) + N O(1)  →  RSh,N(d) + ∞  !

!   However:  O(1)  “loss” goes to zero as  d  !
!approaches variance.  !

!   With KLT, variances are eigenvalues. 

!   Lemma:  For any  δ > 0,  fraction of eigenvalues > δ  goes to zero.!

!   With transform coding!

!   For most i,  di ≈ λi , so there is virtually no loss   ⇒   overall loss is small.!
	
  	
  	
  	
    

€ 

R ≈ N 1
M ri

i=1

M
∑ =N 1

M R
di
λ i
(M)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

i=1

M
∑

d!

Rsh(D)	

 Rsq(D)!

σ2	
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Summary!
!   For coding with transform and quantization.  !

!   Probably the middle one. !!

   
   

   
   

ra
te
!

density N!    
   

   
   

ra
te
!

density N!

   
   

   
 ra

te
!

density N!
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Overall Summary!
!   Can attain optimal rate-distortion performance with high-rate sampling 

and transform coding!

!   Can attain good rate-distortion performance with high-rate sampling and !
–  Transform coding with scalar quantization!
–  Distributed coding!

!   Cannot attain good rate-distortion performance with high-rate sampling 
and direct scalar quantization, even with entropy-rate coding.!

!   To attain good performance, the dimension of the quantizer (in time) 
must grow as sampling rate grows.!

!   If one wishes to use scalar quantization plus ERC, one should not use 
too large a sampling rate, because entropy-rate does not decrease fast 
enough to mitigate the effect of high sampling rate.!

!   In centralized transform coding, scalar quantization does not cause a 
problem because most coefficients are scalar quantized at very low 
rates at which there is very little loss relative to high-dimensional VQ.!
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Ongoing Work!
!   High-resolution, high-sampling-rate analysis:!

–  We are finding closed form expressions for ORDF  RC(d)  for distributed 
and transform coding when sampling rate is large and distortion  d   is 
constrained to be small.  !

!   Convergence of discrete-time power spectral density to continuous-time 
power spectral density:!

–  We are identifying conditions under which one can rigorously prove!

and finding counterexamples, where conditions do not hold.!
	
  	
  	
  	
  

€ 

NΦN(Nω)→ S(ω)	
  	
  as	
  	
  N→∞


