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Field gathering:
Sampling, Encoding, Transporting, Reconstructing




Field-Gathering Wireless Sensor Network

|

\ o

Sensors sample a field in two-dim’l region at discrete sequence of times.

Each sensor source encodes its time-sequence of samples.
This requires distributed lossy source coding.

Communication network conveys bits to collector.

Decoder at collector reconstructs snapshots of field (not just at sensor locations).
We focus here on performance of source coding, not communication network.
Competing Goals: minimize

— rate = avg. number of bits per unit area per snapshot

— MSE distortion, integrated over entire region



Centralized Coding
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Principal Goals and Questions

Goal: design encoders and decoder to minimize coding rate subject to MSE
distortion being at most target value d.

coding rate = Dbits/unit-area/time step

= sampling rate  x coding rate per sample
(sensors/unit area) x (bits/sensor/time step)

For a given random field model X, class of coding schemes C, sampling rate
S, and target distortion d, the coding rate per sample can be as small as the
operational rate-distortion function Ry . s(d).

Hence, given X, C, S, d, coding rate can be as small as
S X Ry s(d)

Goal: For different code classes C, find limitof S x Ry s(d) forlarge S.

Question: Like which of the following does S x Ry s(d) behave?
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Simplify to 1-dimensional, continuous-time signals

B Not so much theory is known for source coding for continuous-time
sources, even in 1-dimension



Four Classes of Lossy Source Codes
to be Used with High-Rate Sampling

We’'ll analyze the following classes for stationary, Gaussian, continuous-time
sources

B Transform + VQ
(centralized & optimal)

B Scalar quantization + entropy-rate coding:
(centralized or distributed, no transform, suboptimal)

B Distributed VQ:
(no transform, suboptimal)

B Transform + scalar quantization:
(centralized, suboptimal)



Ideas Leading to a Conjecture

B For continuous-time source

— Best performance of lossy source codes is given by Shannon rate-distortion
function R, (d).

— For Gaussian source, a parametric expression for R, (d) is known (Kolmogorov).

— Performance as good as R, (d) can be attained (to within €) by sampling at very
high rate, coding samples, and reconstructing cont.-time signal.

B For discrete-time (sampled) source

— Best rate-distortion performance with distributed coding is not known, except for
two Gaussian sources.

— Uniform scalar quantization plus entropy-rate coding has performance close to
R, (d) for any discrete-time source.

— Entropy-rate coding can be done in distributed fashion with as small rate as
centralized coding. (Slepian-Wolf coding)

B Conjecture: uniform scalar quantization + distributed entropy-rate coding is
distributed coding system that works well for cont-time source with high sampling
rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependences to mitigate
large sampling rate.)



Ideas Leading to a Conjecture

B For continuous-time source
— Best performance of lossy source codes is given by Shannon rate-distortion
function R, (d).
— For Gaussian source, a parametric expression for R, (d) is known (Kolmogorov)
— Performance as good as R, (d) can be attained (to within €) by sampling at very
high rate, coding samples, and reconstructing cont.-time signal.
B For discrete-time (sampled) source
— Best rate-distortion performance with distributed coding is not known, except for
two Gaussian sources.
— Uniform scalar quantization plus entropy-rate coding has performance close to
R, (d) for any discrete-time source.
— Entropy-rate coding can be done in distributed fashion with as small rate as
centralized coding. (Slepian-Wolf coding)
B Conjecture: uniform scalar quantization + distributed entropy-rate coding is

distributed coding system that works well for cont-time source with high sampling
rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependences to mitigate
large sampling rate.)
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Four Strategies For Lossy Source Coding
Based on High-Rate Sampling

We’'ll analyze the following for stationary, Gaussian, continuous-time sources

B Transform + VQ
(centralized & optimal)

B Scalar quantization + entropy-rate coding:
(centralized or distributed, no transform, suboptimal)

B Distributed VQ:
(no transform, suboptimal)

B Transform + scalar quantization:
(centralized, suboptimal)



Review: Lossy Source Coding in Discrete-Time

X, X, ... X, Y, Y, .Y,

> encoder . > decoder —>
source data bits reproduction

Code: ¢ = encoder & decoder (e.g. block code)
Performance = rate & MSE distortion

— R(c) = #Ab/lits/sample

— D(c)= —EE(X Y)

I =1
Operational rate-distortion function ORDF for class of codes C

— R,(d) = least rate of any ¢ in C with D(c)<d

r

Shannon rate-distortion theory: if Cincludes all block codes with all blocklengths

Bc(d) = Rgp(d) —NHLnoo pwl];)_/(x ;Y) £ Shannon rate - dist'n func.

2
Example: IID Gaussian Rg,(d) =max {%Iog%,o}

. : 1. o2
High resolution theory: when d small ~ Rg(d) = §I0g7 +Mc, x

where n. x depends on class of codes and source statistics [Bennett, Zador].
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ORDF: Block Codes & DT Gaussian Source

With orthogonal transform

R(c)=%g1l?(o,-), D(c)=— g(c, ? T T T T 1 3 T

Using optimal codes with distortions d, X = X l le XM l
M .
R(C) _ i 2 max{l Iog h’ O} C KL transform )
M 2 d; Uu = U| U Um
where A; = e. val. of cov. matrix K, of X E1| |E2| o o o |EM
M . )
Minimize over d,,...,d,, =0 s.t. 154 <d o !
to find there exists d’ s.t. =1 Di| [D2| o e o |Dw
, V = V4 Vo VM
d=min{d’, A}, all i Ty ,
C KL inverse transform )

Y = Y1i Ygi YMi

Ft’(d)=lA2”max{1log ,O} | |
M 2 d
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ORDF: Block Codes & DT Gaussian Source

With orthogonal transform B Convenient parametric form: 6>0
1M 1M
R(c) = M% R(ci), D(c)= M% D(c;) dp(0)=— z min {%;, 6}
B - M1
Using optimal codes with distortions d; ~ 1 Ty
1 M 1 A RM(9)=M.E max EIOgE’ 0
R(c)=— Y max{—log =1, 0 i=1

where ), = e. val. of cov. matrix K,y of X ¥ Take M 2 o, using asympt. e. val.

1M dist’n thm:
Minimize over d,,...,d;; =0 s.t. —Y d;j=d

to find there exists d’ s.t. d(0)= ; — [ min {(I)(Q), 6} dQ
d=min{d’, »}, all i

T_n
TT
f max {%Iog CI)%Q)I O} dQ2

where ®(€2) is power spect. density
of discrete-time process X.

i
d —1 S m 1 I 0 2
R( )_Mi=§j1 ax{2 0g d” }

[Kolmogorov 56]
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Review: Lossy Source Coding in Continuous-Time

X(t) Y(t)

—> encoder ——>{ decoder —>
source data bits reproduction

B Code: c¢ = encoder & decoder (e.g. block code)
B Performance = rate & MSE distortion
— R(c) = # bits/second

1T 5
- D(c) = - JE(X(t)-Y(t))
0

B Operational rate-distortion function ORDF for class of codes C
— Rg(d) = leastrate of any cin C with D(c) <d
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ORDF: CT Gaussian Source

Sample at N samples/sec —»f IN e

When N large, WW

D = distortion in decoded samples | |
R = R(c) x N Dits/sec

X = X1l x2l le
Take limit as N -) oo of
( KL transform )
d(e, N)-2— f min {®pn(Q), 6} dQ U = U] U Un
J.l: y y y
Ei1| |[E2| o o @ Em
~ 1 T Q
F(0.N) =1 | max {21094, o} do
2“—3‘[’, 2 9 y y y
Change variables and use D1} [P2] e o o |Dm
N® y(Nw)— S(w) as N —> R ! ™y
where S(w) is power spectral density of X(t). (L Kuinverse transform )
. . ] Y = Y1i Yzi Ymi
To get inverse water pouring formulas:
1 00 . [ |
D(6) = — [ min {S(w), 6} dw W
2m "
> Kol '56, B 71
R(8)=2if max{ 0g (oo) O}d [Kolmogorov *56, Berger “71]
T _oo
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Summary and Interpretaton

D(6)=-- [ min IS(0), 6} do

21 _,

distortion profile

CR(G)=i Ofo max

21 _

b

1. S(w)
—log—=, 0
6 0

o
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Examples

S(w) R(d)
+ S(Q)
imi lIog l+c
bandlimited 0 o 5 092y
+ S(Q) 5
-| ] 1 C
exponentia| e 6& C(C|n5+|n|ng+0+0(1)
spectrum - @
+ S(Q)
G Mark ° Y .
auss-Markov | . O o
w2 +1 d

¥ Heavier tailed spectrum => larger R(d) atsmall d.
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Summary

For coding with transform and vector quantization.

rate
rate

‘ \__
I densim | density N

Probably the middle one.

rate

density N
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Ideas Leading to a Conjecture

For continuous-time source

— Best performance of lossy source codes is given by Shannon rate-distortion
function R, (d).

— For Gaussian source, a parametric expression for R, (d) is known (Kolmogorov).

— Performance as good as R, (d) can be attained (to within €) by sampling at very
high rate, coding samples, and reconstructing cont.-time signal.

For discrete-time (sampled) source

— Best rate-distortion performance with distributed coding is not known, except for
two Gaussian sources.

— Uniform scalar quantization plus entropy-rate coding has performance close to
R, (d) for any discrete-time source.

— Entropy-rate coding can be done in distributed fashion with as small rate as
centralized coding. (Slepian-Wolf coding)

Conjecture: uniform scalar quantization + distributed entropy-rate coding is
distributed coding system that works well for cont-time source with large sampling
rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependence to mitigate
large sampling rate.)
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Four Strategies For Lossy Source Coding
Based on High-Rate Sampling

We’'ll analyze the following for stationary, Gaussian, continuous-time sources

B Transform + VQ
(centralized & optimal)

B Scalar quantization + entropy-rate coding:
(centralized or distributed, no transform, suboptimal)

B Distributed VQ:
(no transform, suboptimal)

B Transform + scalar quantization:
(centralized, suboptimal)



Review: Centralized and Distributed Entropy-Rate
Coding for Discrete-Time Source

B Entropy-Rate Coding (ERC)

— The lowest rate with which a discrete-stationary source can be lossless
encoded (for example with block-to-variable-length codes or conditional
codes) its entropy-rate

[[>g

Hoo lim %H(X»],...,XL) = |lim H(XL/X1,...,XL_1) bits/sample

L — L —

B Example: stationary Markov source  H,, = H( X,/ X,)

B ERC can be done in a distributed fashion at the same rate! [Slepian-Wolf "73]

bits ) N
X1.1,...X1.L —»—» > X71.1..X1.L

bits
X2,1 ..... XQ,L —»—» — X2,1 ..... XQ,L

decoder

oo0o
oo0o
oo0o
ooo

—

bits
Xv1,... XML —>—> > Xv1,.. XML
J J J J

22



Uniform Scalar Quantization (USQ) with ERC

Assume small step size A

2 I I; '
Distortion: D(c) = A Xi —>l quantizer " 'qvamt. [ Yi= 00t
12 qua_n’gzation
Rate: = = = — index
R(€) = H(¥) = Has(1) = Hoo(X) ~ log3 A —
For a stationary, discrete-time source, ‘ %
the ORDF of USQ with ERC is > Al FI 1,y

Re(d) = Rgp(d) + 0.255

With distributed ERC, USQ + ERC

becomes distributed coding system.

T

=12345678

> A<
scalar Slepian-Wolf Inverse
. > ——— P P
X1 - quantizer encoder quant [ Y1
scalar Slepian-Wolf Slepian- inverse
: —— ———» > >
X2 = quantizer encoder Wolf quant Y3
o . decoder
o [] (]
g o o o o
[o] o (o] o]
scalar Slepian-Wolf Inverse
: —— ———» > >
Xm—> quantizer encoder quant Yy
quantization bits quantization
indices indices
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Ideas Leading to a Conjecture

B For continuous-time source

— Best performance of lossy source codes is given by Shannon rate-distortion
function R, (d).

— For Gaussian source, a parametric expression for R, (d) is known (Kolmogorov).

— Performance as good as R, (d) can be attained (to within €) by sampling at very
high rate, coding samples, and reconstructing cont.-time signal.

B For discrete-time (sampled) source

— Best rate-distortion performance with distributed coding is not known, except for
two Gaussian sources.

— Uniform scalar quantization plus entropy-rate coding has performance close to
R, (d) for any discrete-time source.

— Entropy-rate coding can be done in distributed fashion with as small rate as
centralized coding. (Slepian-Wolf coding)

B Conjecture: uniform scalar quantization + distributed entropy-rate coding is
distributed coding system that works well for cont-time source with large samplin
rate (performance might be close to optimal).

(Idea: entropy-rate coding will exploit strong sample dependence to mitigate
large sampling rate.)
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The Good News

B Suppose we sample with rate N, quantize, entropy-rate code, and
reconstruct cont-time signal.

— D = MSE of quantizer on samples; not affected by sampling rate
— R = N x R(c) Dbits/sec
= N x H,(N) (entropy-rate is a function of sampling rate)

B Theorem 1: [Marco-DN 2009]
For any stationary source and quantizer

Ho(N)—0 as N —x

B Proof sketch: (recall is index produced by quantizer in response to X)
for any L,

1
Ho(N) < LH(/»],...,/L) = ZEH(/1|/1,...,/n_1)
n=1

1 L1
< ZH(/1) + TH(/Z |14) by stationarity

— (0 as N—o because Pr(lp =1q)—1



The Bad News ... Conjecture is False

B Theorem 2: [Marco-DN 2009]
For virtually any stationary source and quantizer

NH,(N)— > as N — o
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Key Observation’
4 I/N

~—1 1

F S = location of 1st threshold crossing in [0,1]; S=2 if no crossing.

B H(S) =, since S isrand. variable with a continuous component.

¥ From quantizer indices [, ...,I,;, can make estimate Sy of S s.t.
‘S— SN‘ < % with high probability

E  This implies H(S,) — .
E Also H(,...lI\y)=H(S,), since S, is afunctionof /,...,1

B Thus  lim NHy(N) = lim n HOIN) H(ly,....In) = o

— 00 N — N —

1Courtesy of Bruce Hajek
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Another Explanation

R= N x R

= N x (Ry,n(d) +0.255)
2> R, (d)+ x

The weakness of this argument is that R(c) is small when N is large, whereas
the high resolution approximation used is generally valid only when rate is large.
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Summary

B Bad news from Theorem 2: For scalar quantization and S-W distributed
lossless coding,

N R\(d) —

2 2
© o j] :
density N denS|t denm

B With identical scalar quantizers, when sensors are dense, entropy coding

cannot sufficiently exploit increased correlation to mitigate increased number
of sensors

B N.B.: Itis not that field gathering with identical scalar quantizers is infeasible.

But with such, there is a finite best sampling density.
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At What Rate Does NH_, (N) — oo ?

E Theorem: [Marco-DN 2010] For unif. scalar quant. with step size A, infinitely
many levels and stat’ry Gaussian M0,02) source with autocorr. func. p(t),

NHx(N) < H(l,....In) < NH(I5 111) = = Nm+A-p(/N) logp/1- p(1/N)

where
- (k+1/2)° A2
2V2 & 207
m=-—— Ye
T kzo
B Examples: When N is large,
— It/ _m
o(t) = e = NH(Ip 111) = =—~Nlog,N

2
o(t) = € F - NH(I3 111) = logoN
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Why Does Scalar Quantization Perform So Poorly
With Dense Sensors?

B Orjust a flaw of scalar quantization based schemes?

B [s it a flaw of all distributed source coding schemes?
<his one

B Consider Distributed Vector Quantization (VQ)

B Kashyap et al. [2005]

— Showed that for a stationary, Gaussian source and ideal distributed lossy
coding, N R,(d) remains finite as NV increases.

E Pradhan & DN [2006,2013]

— Made a similar analysis.

E Note: VQ dimension must increase with sampling rate /V.
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Four Strategies For Lossy Source Coding
Based on High-Rate Sampling

We’'ll analyze the following for stationary, Gaussian, continuous-time sources

B Transform + VQ
(centralized & optimal)

B Scalar quantization + entropy-rate coding:
(centralized or distributed, no transform, suboptimal)

B Distributed VQ:
(no transform, suboptimal)

B Transform + scalar quantization:
(centralized, suboptimal)
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Distributed Vector Quantization

T FooT A A
X1,10X12 PYLK]‘——’ —> X
. ~ : I i A

EX2155X22 :XZK}_> encoder » decoder —» X>
e bits )

E o : o : o E .

Elel‘ﬁjl2 AJ{AW“" —> Xy
% .}7 ......

snapshot 1 snapshot K
snapshot 2

E Msensors, 1/N apart in spatial interval [0, M/N|
E Spatial sampling rate = N

¥ For sampled source, Rp,o(M,d) known only for M=2 Gaussian
sources [Wagner, et al. 2007)

E Kashyap et al. [05] and Pradhan-DN [06,10] applied Berger-Tung
bound [77] to obtain upper bounds to Ry, 4(M,q) .



Berger-Tung Bound for Distributed VQ

E Lower bound to least rate of distributed encoding of M sources with MSE d :

. o]
RDVQ(M,d) = RBT(M,d) = 'gfmlp(x'l"'XM;Y’l-"YM)

where “inf” is over test channels with MSE < D.

Has same form as M-th-order Shannon rate-distortion function, except
— Components of test channel are conditionally independent given source
inputs

M
PV YM I X1, Xpp) = 11 P(Yi 1 X))
i=1
— In determining MSE, the test channel output Y,...Y,,is followed by an
optimal estimator for inputs X....X,, from source.
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Applying Berger-Tung and Kuhn-Tucker

B Choose test channel:

Y = ﬁ(x, +Z;), i=1,..,M

with Z’s IID, MO0,6)

B Use Kuhn-Tucker:
1 M 4 ©i
Rero=172 o |092(—'+1)
=1 0
M
1 AiO
Dgr g = P
BTO =W 2, 7 +0

where A,,...,A;, are the eigenvalues of
covariance matrix of Xj... X,

In comparison

for centralized VQ
1M 1, A
Rsho = MI;max{?Iogz EIO}

1M
Dsh o = MI;mln{)\,-,e}
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B Begin with

Take Imit as M > o0

for centralized VQ

1M 1, N
RSh,G = mlz Mmax 7'092 E’O

1M
Dshp = M/21m|n{xi,6}

(9)

Rsho 5~ 1 = max{ logs

1 :
Dsp, o=>7= _fnmln{CD( Q)e} aQ

0J
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Let Sampling Rate N — oo

B Change variables -- let w = QN

1 N 1 d(w/N)/N ) 1

1 an olw/No 1

20 AN D(w/N)+ON

Dprg —

B Let sampling rate N — o; let ¢ =0ON; then ®(w/N)/N — S(w) as N—

1 °°1 S(w
NRBT,@ %RBT Qﬁf 2 ((T)+1)d(x)

Dprog = Dgryp = 7%))?

B This upper bound to optimal performance of distributed coding coding might
be tight.
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Comparison

Distributed Coding Centralized Coding
(attainable rate) (optimal rate)

+ 1) dw RSh,@ _ 213 f max{%logz %,O}dw

Dsh g = 21&_foomin{8(m),¢}dw

—S(Q)
- = =centralized d(Q)
distributed d(R2)

distributed coding
/_ min{S(w),q)} cannot use transform,
and so cannot have
sharp cutoff
bandlimiting.
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Example

B Source -- stationary, Gauss-Markov,

_ -l 2
p(t)=€e"", S(U))—mz

Distributed Coding
(attainable rate)

Rpr(d) = ﬁ(g— 1)

= 6.5 bits/m

d=0.1

S(w)

Magnitude in dB

-14
5

Centralized Coding
(optimal rate)

Rgp(d) = Z%Z(%_ 1) for smalld

= 5.1 bits/m



Example

B Source -- stationary, flat bandlimited

T, |o=w,

0, else

5((1))={

Distributed Coding
(attainable rate)

1
Rgr(d) = 921og, -

= 1.7 bits/m d=0.1

S(w)

Centralized Coding
(optimal rate)

1

Rsn(d) = 7z logz —

= 1.7 bits/m
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Summary

For coding with distributed vector quantization.

rate
rate

‘ \__
I densim | density N

Probably the middle one.

rate

density N
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Are Scalar Quantizers Always Bad
with Dense Samples?

E Not always!
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Four Strategies For Lossy Source Coding
Based on High-Rate Sampling

We’'ll analyze the following for stationary, Gaussian, continuous-time sources

B Transform + VQ
(centralized & optimal)

B Scalar quantization + entropy-rate coding:
(centralized or distributed, no transform, suboptimal)

B Distributed VQ:
(no transform, suboptimal)

B Transform + scalar quantization:
(centralized, suboptimal)




Transform, scalar quantization, entropy coding

Proceed as before ... i

Sampling rate N rate over [0,%) | HTITTT|

KLT KLT KLT KLT KLT

M-dimensional KLT produces M
indep. Gaussian coef’s with
variances equal to eigenval’s of
covar. matrix of X, X,, ..., X,

M M
AL A

Independently scalar quantize
and entropy code each type of
transform coefficient, instead of
optimally VQ encoding.

Optimize the rate allocation for
coefficients r,, r,, ..., ry

Take M to infinity.
Take N to infinity.
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Transform, scalar quantization, entropy coding

M§

Rate: R 7\;,

1

d;
i=1

—
Il

M§

Distortion: D = 7\;,

Let R(d) denote ORDF for
scalar quantizing with entropy
coding a unit variance Gaussian variable,

Assume R(d) is convex.
: d;
Then for 1 thcoef. r =R N
i

Use Kuhn-Tucker theory to optimize d;s.

R(D)
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Transform, scalar quantization, entropy coding

Given ¢ <0, Kuhn-Tucker gives
d; = A; D92y
where D’(-) is the inverse of the derivative of R(")

Substituting this gives optimal rate-distortion pairs, parameterized by ¢

R —lMR(D'( AM))
Tr,¢_MI§1—— ¢ i

Dr; 4 W2 ?\(IM) min{1,[_)’(q)7»(,M))}

Dimension M — o
1 % ,
Rrr = 7 | R(D'(90(€))) dQ

1 T
Dr o — Qﬁ_fnmm{lQ'(q)q)(Q))} dQ
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Transform, scalar quantization, entropy coding

B Change variables -- let w = QN

1 TN 1
Rre o — QR_J{NB(Q’(q)CI)(m/N))) Ndoo
N 1

1 . ,
Dr o — Qﬁ_iNmm{'LQ (¢(I)((D/N))}N dw
E Sampling rate N— o let ¢ =ON, ®(w/N)/IN— S(w) as N —»

T4

)

O
|
O
<
D
|
— 3
W
©
e
N—
3
-
—
IS
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Transform, scalar quantization, entropy coding

To repeat

Riro = Ql_fOOR(D (S(g))) W
D1y o —21—_}05((1)) mm{1 D’ ( (E()D))}

Since these are finite, scalar quantization does not lead to catastrophic
performance, provided it is preceded by a transform.

Note: If R(.) is replaced by Shannon rate-distortion function for Gaussian
samples, the above reduces to Shannon rate-distortion function for
continuous-time Gaussian source.

[Pradhan-DN, 2007,13]

48



Why Does Transform Coding With Scalar
Quantization Not Suffer Catastrophically Bad
Performance?

Without transform, scalar quant. + ent. coding has rate
Rn(d) = Rg,n(d)+ O(1)

R ~ NRyd)+NO() > Rg,y(d) + Rs(D) Fse(D)

However: O(1) “loss” goes to zero as d d
approaches variance. 0?

With KLT, variances are eigenvalues.
Lemma: For any 0 >0, fraction of eigenvalues >0 goes to zero.

With transform coding

For most i, d;= A;, so there is virtually no loss = overall loss is small.
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Summary

For coding with transform and quantization.

rate
rate

[

densim density N

Probably the middle one.

rate

density N
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Overall Summary

Can attain optimal rate-distortion performance with high-rate sampling
and transform coding

Can attain good rate-distortion performance with high-rate sampling and
— Transform coding with scalar quantization

— Distributed coding

Cannot attain good rate-distortion performance with high-rate sampling
and direct scalar quantization, even with entropy-rate coding.

To attain good performance, the dimension of the quantizer (in time)
must grow as sampling rate grows.

If one wishes to use scalar quantization plus ERC, one should not use
too large a sampling rate, because entropy-rate does not decrease fast
enough to mitigate the effect of high sampling rate.

In centralized transform coding, scalar quantization does not cause a
problem because most coefficients are scalar quantized at very low
rates at which there is very little loss relative to high-dimensional VQ.
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Ongoing Work

B High-resolution, high-sampling-rate analysis:

— We are finding closed form expressions for ORDF R,(d) for distributed
and transform coding when sampling rate is large and distortion d is
constrained to be small.

B Convergence of discrete-time power spectral density to continuous-time
power spectral density:

— We are identifying conditions under which one can rigorously prove
N®y(Nw)— S(w) as N — o
and finding counterexamples, where conditions do not hold.
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