One-bit matrix completion

Yaniv Plan

University of Michigan

Joint work with

(a) Mark

Davenport

(b) Ewout van den Berg

(c) Mary Wootters

Low-rank matrices

Example: Netflix matrix

$$
\left(\begin{array}{llll}
M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\
M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\
M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \\
M_{4,1} & M_{4,2} & M_{4,3} & M_{4,4}
\end{array}\right), \quad M_{i, j}=\text { How much user } i \text { likes movie } j
$$

Low-rank matrices

Example: Netflix matrix

$$
\left(\begin{array}{llll}
M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\
M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\
M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \\
M_{4,1} & M_{4,2} & M_{4,3} & M_{4,4}
\end{array}\right), \quad M_{i, j}=\text { How much user } i \text { likes movie } j
$$

Rank-1 model:

- $a_{j}=$ Amount of action in movie j
- $x_{i}=$ How much user i likes action

$$
M_{i, j}=x_{i} \cdot a_{j}
$$

Low-rank matrices

Example: Netflix matrix

$$
\left(\begin{array}{llll}
M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\
M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\
M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \\
M_{4,1} & M_{4,2} & M_{4,3} & M_{4,4}
\end{array}\right), \quad M_{i, j}=\text { How much user } i \text { likes movie } j
$$

Rank-1 model:

- $a_{j}=$ Amount of action in movie j
- $x_{i}=$ How much user i likes action

$$
M_{i, j}=x_{i} \cdot a_{j}
$$

Rank-2 model:

- $b_{j}=$ Amount of comedy in movie j
- $y_{i}=$ How much user i likes comedy

$$
M_{i, j}=x_{i} \cdot a_{j}+y_{i} \cdot b_{j}
$$

Low-rank assumption

- The number of characteristics that determine user preferences should be smaller than the number of movies or users.
- M should depend linearly on the characteristics:

$$
M_{i, j} \neq \exp \left(x_{i} \cdot a_{j}\right)
$$

- These characteristics need not be known.

Matrix completion

Matrix completion: Completion of \mathbf{M} from a subset of the entries.

$$
\left(\begin{array}{ccc}
? & M_{1,2} & ? \\
? & ? & M_{2,3} \\
M_{3,1} & ? & M_{3,3} \\
M_{4,1} & M_{4,2} & ?
\end{array}\right) \xrightarrow{\text { Matrix Completion }}\left(\begin{array}{ccc}
M_{1,1} & M_{1,2} & M_{1,3} \\
M_{2,1} & M_{2,2} & M_{2,3} \\
M_{3,1} & M_{3,2} & M_{3,3} \\
M_{4,1} & M_{4,2} & M_{4,3}
\end{array}\right)
$$

[Incomplete set of researchers: Srebro, Fazel, Candès, Recht, Rennie, Jaakkola, Montanari, Soo, Wainwright, Negahban, Yu, Koltchinskii, Lounici, Tsybakov, Klopp, Cai, Zhou, P.,... 2004-present]

Matrix completion

Matrix completion: Completion of \mathbf{M} from a subset of the entries.

$$
\left(\begin{array}{ccc}
? & M_{1,2} & ? \\
? & ? & M_{2,3} \\
M_{3,1} & ? & M_{3,3} \\
M_{4,1} & M_{4,2} & ?
\end{array}\right) \xrightarrow{\text { Matrix Completion }}\left(\begin{array}{ccc}
M_{1,1} & M_{1,2} & M_{1,3} \\
M_{2,1} & M_{2,2} & M_{2,3} \\
M_{3,1} & M_{3,2} & M_{3,3} \\
M_{4,1} & M_{4,2} & M_{4,3}
\end{array}\right)
$$

[Incomplete set of researchers: Srebro, Fazel, Candès, Recht, Rennie, Jaakkola, Montanari, Soo, Wainwright, Negahban, Yu, Koltchinskii, Lounici, Tsybakov, Klopp, Cai, Zhou, P.,... 2004-present]

Imputation: Dealing with incomplete statistical data [Rubin, Little 1987; Daniels, Hogan 2009].

- Case deletion.
- Mean imputation
- Regression mean imputation.
- Multiple Imputation.
- Bayesian factor models.

One-bit matrix completion: Motivation

Binary data with missing entries

Senate Voting

Senate bills

Binary data with missing entries

Mathoverflow

Math questions

Binary data with missing entries

Pandora

$$
\text { People }\left(\begin{array}{ccccc}
\because & \ddots & \ddots & ? & \ddots \\
? & ? & ? & \ddots & \ddots \\
\bigodot & ? & ? & ? & \ddots \\
? & \ddots & \ddots & ? & ? \\
? & \ddots & ? & ? & ?
\end{array}\right)
$$

Binary data with missing entries

Research literature

Papers

Binary data with missing entries

Netflix

Movies

Binary data with missing entries

Reddit

Articles

Binary data with missing entries

Incomplete binary survey

Binary data with missing entries

Sensor triangulation

Sensors $\left(\begin{array}{lllll}\because & \ddots & \ddots & \ddots & \ddots \\ \because & \ddots & \because & \ddots & \ddots \\ \because & \ddots & \ddots & \ddots & \ddots \\ \because & \ddots & \ddots & \ddots & \ddots \\ \because & \ddots & \because & \ddots & \ddots\end{array}\right)$

Binary data with missing entries

Senate Voting

Senate bills

Q: Low-rank model?
A: A classical numerical experiment with voting data.

Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

(f) First singular vector of Y

Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

(h) First singular vector of Y

(i) Senate party affiliations

Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

(j) First singular vector of Y

(k) Senate party affiliations

\Rightarrow A low-rank model?

- What matrix has low rank?

Low-rank assumption

Consider the senate voting example.

- Can the voting preferences of a certain senator be predicted given only a few characteristics of this senator?
- Does \mathbf{Y} depend linearly on these characteristics?

Generalized linear model

Generalized linear model

- \mathbf{M} is unknown. \mathbf{M} has (approximately) low rank.
- $f: \mathbb{R} \rightarrow[0,1]$ is a known function (e.g., the logistic curve).
- $\mathbf{M} \in \mathbb{R}^{d \times d}, \mathbf{Y} \in\{\odot, \odot\}^{d \times d}$.

Generalized linear model

- \mathbf{M} is unknown. \mathbf{M} has (approximately) low rank.
- $f: \mathbb{R} \rightarrow[0,1]$ is a known function (e.g., the logistic curve).
- $\mathbf{M} \in \mathbb{R}^{d \times d}, \mathbf{Y} \in\{\odot, \odot\}^{d \times d}$.
- $\Omega \subset\{1,2, \ldots, d\} \times\{1,2, \ldots, d\}$. You see \mathbf{Y}_{Ω}.

Latent variable formulation

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}+Z_{i, j}\right)= \begin{cases}\bigodot & \text { if } M_{i, j}+Z_{i, j} \geq 0 \\ \bigodot & \text { if } M_{i, j}+Z_{i, j}<0\end{cases}
$$

- Z is an iid noise matrix.
- $f(x):=\mathbb{P}\left(Z_{1,1} \geq-x\right)$.
- You see \mathbf{Y}_{Ω}.

Main assumption, main goal

Goal: Efficiently approximate \mathbf{M} and/or $f(\mathbf{M})$.

Assumption: M has (approximately) low rank.

Approximately low-rank

Assumption:

$\mathbf{M} \in \operatorname{conv}($ rank-r matrices with Frobenius norm d)
$\in($ Nuclear-norm ball) $\cdot d \sqrt{r}$
$\Rightarrow\|\mathbf{M}\|_{*} \leq d \sqrt{r}$.

- $\|\mathbf{M}\|_{*}=\sum_{i} \sigma_{i}(\mathbf{M})=\left\|\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d}\right)\right\|_{1}$.
- Robust extension of the rank [Chatterjee 2013].
- Facilitates convex programming reconstruction.

Figure: Nuclear-norm ball in high dimensions

Maximum likelihood estimation

Take our estimate $\hat{\mathbf{M}}$ be the solution to the following convex program:

$$
\max _{\mathbf{X}} F_{\Omega, \mathbf{Y}}(\mathbf{X}) \quad \text { such that } \quad \frac{1}{d}\|\mathbf{X}\|_{*} \leq \sqrt{r}
$$

- $F_{\Omega, \mathbf{Y}}: \log$-likelihood function.

Estimation of the distribution, $f(\mathbf{M})$

Theorem (Upper bound achieved by convex programming)

Let f be the logistic function. Assume that $\frac{1}{d}\|\mathbf{M}\|_{*} \leq \sqrt{r}$. Suppose the sampling set is chosen at random with $\mathbb{E}|\Omega|=m \geq d \log (d)$. Then with high probability,

$$
\frac{1}{d^{2}} \sum_{i, j} d_{H}^{2}\left(f\left(\hat{M}_{i, j}\right), f\left(M_{i, j}\right)\right)^{2} \leq C \min \left(\sqrt{\frac{r d}{m}}, 1\right)
$$

- $d_{H}(p, q)^{2}:=(\sqrt{p}-\sqrt{q})^{2}+(\sqrt{1-p}-\sqrt{1-q})^{2}=$ squared Hellinger distance.

Is this bound tight?

Estimation of the distribution, $f(\mathbf{M})$

Theorem (Upper bound achieved by convex programming)

Let f be the logistic function. Assume that $\frac{1}{d}\|\mathbf{M}\|_{*} \leq \sqrt{r}$. Suppose the sampling set is chosen at random with $\mathbb{E}|\Omega|=m \geq d \log (d)$. Then with high probability,

$$
\frac{1}{d^{2}} \sum_{i, j} d_{H}^{2}\left(f\left(\hat{M}_{i, j}\right), f\left(M_{i, j}\right)\right)^{2} \leq C \min \left(\sqrt{\frac{r d}{m}}, 1\right) .
$$

Theorem (Lower bound achievable by any estimator)
In the setup of the above theorem,

$$
\inf _{\hat{\mathbf{M}}(Y) \mathbf{M}} \sup \mathbb{E} \frac{1}{d^{2}} \sum_{i, j} d_{H}^{2}\left(f\left(\hat{M}_{i, j}\right), f\left(M_{i, j}\right)\right)^{2} \geq c \min \left(\sqrt{\frac{r d}{m}}, 1\right) .
$$

Estimation of M

Assumption: $\|\mathbf{M}\|_{\infty} \leq \alpha$.

$$
\mathbf{M} \neq\left(\begin{array}{lllll}
d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$\max _{\mathbf{X}} F_{\Omega, \mathbf{Y}}(\mathbf{X}) \quad$ such that $\quad \frac{1}{d \alpha}\|\mathbf{X}\|_{*} \leq \sqrt{r} \quad$ and $\quad\|\mathbf{X}\|_{\infty} \leq \alpha$

1-bit matrix completion vs noisy matrix completion: error bounds

- Let $\mathbf{Y}^{0}:=\mathbf{M}+\mathbf{Z}$.
- \mathbf{Z} is a matrix with iid Gaussian noise with variance σ^{2}.
- Let

$$
Y_{i, j}:=\operatorname{sign}\left(Y_{i, j}^{0}\right)
$$

- $\Rightarrow f$ follows the probit model.

Question: How much harder is it to estimate \mathbf{M} from \mathbf{Y} in comparison to estimating \mathbf{M} from \mathbf{Y}^{0} ?

Two regimes: High SNR and low SNR.

Case 1: $\sigma \leq \alpha$ (high signal-to-noise ratio).

Theorem (Upper bound, convex programming, quantized input, \mathbf{Y})
Let f be the probit function. Assume that $\frac{1}{d \alpha}\|\mathbf{M}\|_{*} \leq \sqrt{r}$ and
$\|\mathbf{M}\|_{\infty} \leq \alpha$. Suppose the sampling set is chosen at random with $\mathbb{E}|\Omega|=m \geq d \log (d)$. Then with high probability,

$$
\frac{1}{d^{2}}\|\hat{\mathbf{M}}-\mathbf{M}\|_{F}^{2} \leq C \alpha^{2} \exp \left(\frac{\alpha^{2}}{2 \sigma^{2}}\right) \sqrt{\frac{r d}{m}} .
$$

Theorem (Lower bound, achievable by any estimator, unquantized input)
In the setup of the above theorem, and under mild technical conditions,

$$
\inf _{\hat{\mathbf{M}}\left(Y^{0}\right)} \sup _{\mathbf{M}} \mathbb{E} \frac{1}{d^{2}}\|\hat{\mathbf{M}}-\mathbf{M}\|_{F}^{2} \geq c \alpha \sigma \sqrt{\frac{r d}{m}} .
$$

Case 2: $\sigma \geq \alpha$ (low signal-to-noise ratio).
Theorem (Upper bound, convex programming, quantized input, Y)
Let f be the probit function. Assume that $\frac{1}{d \alpha}\|\mathbf{M}\|_{*} \leq \sqrt{r}$ and $\|\mathbf{M}\|_{\infty} \leq \alpha$. Suppose the sampling set is chosen at random with $\mathbb{E}|\Omega|=m \geq d \log (d)$. Then with high probability,

$$
\frac{1}{d^{2}}\|\hat{\mathbf{M}}-\mathbf{M}\|_{F}^{2} \leq C \alpha \sigma \sqrt{\frac{r d}{m}} .
$$

Theorem (Lower bound, achievable by any estimator, unquantized input)
In the setup of the above theorem, and under mild technical conditions,

$$
\inf _{\hat{\mathbf{M}}\left(Y^{0}\right) \mathbf{M}} \sup \mathbb{E} \frac{1}{d^{2}}\|\hat{\mathbf{M}}-\mathbf{M}\|_{F}^{2} \geq c \alpha \sigma \sqrt{\frac{r d}{m}}
$$

Dithering: noise helps!

Conclusion:

- When the noise is larger than the signal, quantizing to a single bit loses almost no information!
- When the noise is (significantly) smaller than the signal, increasing the noise improves recovery from quantized measurements!

Why we need noise

Take

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}+Z_{i, j}\right)
$$

Now remove the noise!

Why we need noise

Take

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}\right)
$$

Claim: Accurate reconstruction of \mathbf{M} is impossible!

Why we need noise

Take

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}\right)
$$

Suppose that

$$
\mathbf{M}=\left(\begin{array}{llll}
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda
\end{array}\right)
$$

Why we need noise

Take

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}\right)
$$

Suppose that

$$
\mathbf{M}=\left(\begin{array}{llll}
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda
\end{array}\right)
$$

$\Rightarrow Y_{i, j}=\operatorname{sign}(\lambda)$
\Rightarrow Approximation of \mathbf{M} is impossible even if every entry of \mathbf{Y} is seen.

Why we need noise

Take

$$
Y_{i, j}=\operatorname{sign}\left(M_{i, j}\right)
$$

- Suppose that we know that \mathbf{M} has rank 1 so that $\mathbf{M}=\mathbf{u v}{ }^{T}$ for some two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}$.
- $\tilde{\mathbf{M}}=\tilde{\mathbf{u}} \tilde{\mathbf{v}}^{T}$ leads to exactly the same binary data as \mathbf{M} if the signs of \tilde{u} match the signs of \mathbf{u} and similarly for $\tilde{\mathbf{v}}$ and \mathbf{v}.
- \Rightarrow Approximation of \mathbf{M} is impossible even if every entry of \mathbf{Y} is seen.

Related literature

- [Srebro - Rennie - Jaakkola et al. 2004] Model free: If an estimate has low nuclear norm and matches the signs of the observed entries by a significant margin, then the error on unobserved entries is small.
- Our results:
- If the model is correct, then the overall error is nearly minimax.
- Noise helps!
- [Cai-Zhou 2013]: Extension to non-uniform sampling by using max norm.

general f

Let

$$
L_{\alpha}:=\sup _{|x| \leq \alpha} \frac{\left|f^{\prime}(x)\right|}{f(x)(1-f(x))}
$$

Theorem (Upper bound achieved by convex programming)

$$
d_{H}^{2}(f(\widehat{\mathbf{M}}), f(\mathbf{M})) \leq C \alpha L_{\alpha} \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound achievable by any estimator)

$$
d_{H}^{2}(f(\mathbf{M}), f(\widehat{\mathbf{M}})) \geq c \frac{\alpha}{L_{1}} \sqrt{\frac{r d}{m}}
$$

general f

Let

$$
L_{\alpha}:=\sup _{|x| \leq \alpha} \frac{\left|f^{\prime}(x)\right|}{f(x)(1-f(x))} \quad \text { and } \quad \beta_{\alpha}:=\sup _{|x| \leq \alpha} \frac{f(x)(1-f(x))}{\left(f^{\prime}(x)\right)^{2}} .
$$

Theorem (Upper bound achieved by convex programming)

$$
\frac{1}{d^{2}}\|\widehat{\mathbf{M}}-\mathbf{M}\|_{\digamma}^{2} \leq C \alpha L_{\alpha} \beta_{\alpha} \sqrt{\frac{r d}{m}}
$$

Theorem (Lower bound achievable by any estimator)

$$
\frac{1}{d_{1} d_{2}}\|\mathbf{M}-\widehat{\mathbf{M}}\|_{F}^{2} \geq c \alpha \sqrt{\beta_{\frac{3}{4}} \alpha} \sqrt{\frac{r d}{m}}
$$

Experiments with real data.

Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(a) First singular vector of $\hat{\mathbf{M}}$

Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(b) First singular vector of $\hat{\mathbf{M}}$
(c) Senate party affiliations

Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

Voting simulation

(g) First singular vector of $\hat{\mathbf{M}}$

(h) Senate party affiliations

(j) The first five singular values of
(i) First singular vector of \mathbf{Y}_{Ω}.

Voting simulation

Randomly delete 90% of entries.

(k) First singular vector of $\hat{\mathbf{M}}$

(m) First singular vector of \mathbf{Y}_{Ω}.

Voting simulation

Randomly delete 95% of entries.

(n) First singular vector of $\hat{\mathbf{M}}$

(p) First singular vector of \mathbf{Y}_{Ω}.

Voting simulation

With 95\% of votes deleted:

86% of missing votes were correctly predicted. (Averaged over 20 experiments.)

Figure: Percent of missed predictions versus model rank r

- Rank-r approximation of Y_{Ω}
- Nuclear-norm constrained maximum-likelihood estimation

MovieLens data set

- 100,000 movie ratings on a scale from 1 to 5 (sparsely sampled matrix).
- Convert to binary outcomes by comparing each rating to the mean.
- Training on 95,000 ratings and testing on remainder.
- One-bit matrix completion: Given +1 s and -1 s . Evaluate by checking if we predict the correct sign.
- Standard matrix completion: Given original values from 1 to 5 . Evaluate by checking if the imputed value is above or below the mean.
- "Standard" matrix completion: 60\% accuracy 1: $64 \% \quad 2: 56 \% \quad 3: 44 \% \quad 4: 65 \% \quad$ 5: 74%
- Binary matrix completion: 73\% accuracy $\begin{array}{lllll}1: 79 \% & 2: 73 \% & 3: 58 \% & 4: 75 \% & 5: 8\end{array}$

Restaurant recommendations

[REU with Gao, Wootters, Vershynin]

Restaurant Satisfaction Survey

This is a fun survey on your tastes in restaurants near campus.
Based on your answers combined with those of your peers we will determine other restaurants that you would probably enjoy!

1. What do you think of Sava's? *

OI like it.
OI don't like it.
OI have never been there.
2. What do you think of Gratzi?

OI like it.
OI don't like it.
O I have never been there.
3. What do you think of Jazzy Veggie?

Ol like it.
OI don't like it.
OI have never been there.
4. What do you think of Jimmy John's?

- 100 restaurants, 107 users.
- 11 yes/no answers per user.
- $>75 \%$ success rate in recommending 1 restaurant per user (estimated using cross validation).

Learning analytics

Figure: Problem Roulette [Evrard et al. 2013, Am. J. Phys.]

Goals:

- Recommend practice problems to students based on past performance.
- Learn which practice problems have the best teaching ability.

Learning analytics

Data from Phys 240:

- ~ 450 students.
- ~ 370 challenging multiple-choice problems.
- ~ 20% of problems answered.

Last answer by each student used for cross validation.
68% of answers correctly predicted.

- How well do we predict individual probabilities?

Learning analytics

Data from Phys 240:

- ~ 450 students.
- ~ 370 challenging multiple-choice problems.
- $\sim 20 \%$ of problems answered.

Last answer by each student used for cross validation. 68% of answers correctly predicted.

- How well do we predict individual probabilities?

Methods of proof

Upper bounds: Probability in Banach spaces/random matrix theory

Lower bounds: Information theoretic techniques: Fano's inequality

Bare-bones sketch of upper bound proof

Recall: $F_{\Omega, \mathbf{Y}}(\mathbf{X})$ is the log-likelihood of \mathbf{X} (we maximize it).
(1) For a fixed matrix, $\mathbf{X}, \mathbb{E}\left(F_{\Omega, \mathbf{Y}}(\mathbf{M})-F_{\Omega, \mathbf{Y}}(\mathbf{X})\right)=c \cdot D(f(\mathbf{X}) \| f(\mathbf{M}))$.
(2) Lemma: the following holds for all \mathbf{X} satisfying $\frac{1}{d \alpha}\|\mathbf{X}\|_{*} \leq \sqrt{r}$:

$$
\left|F_{\Omega, \mathbf{Y}}(\mathbf{X})-\mathbb{E} F_{\Omega, \mathbf{Y}}(\mathbf{X})\right| \leq \delta
$$

(3) The maximizer, $\hat{\mathbf{M}}$ satisfies $F_{\mathbf{Y}, \Omega}(\hat{\mathbf{M}}) \geq F_{\mathbf{Y}, \Omega}(\mathbf{M})$.
(9)

$$
\begin{aligned}
0 & \geq F_{\Omega, \mathbf{Y}}(\mathbf{M})-F_{\Omega, \mathbf{Y}}(\hat{\mathbf{M}}) \geq \mathbb{E}\left(F_{\Omega, \mathbf{Y}}(\mathbf{M})-F_{\Omega, \mathbf{Y}}(\hat{\mathbf{M}})\right)-2 \delta \\
& =c \cdot D(f(\hat{\mathbf{M}}) \| f(\mathbf{M}))-2 \delta
\end{aligned}
$$

Thus,

$$
D(f(\hat{\mathbf{M}}) \| f(\mathbf{M})) \leq \frac{2}{c} \delta
$$

Key step: Proof of lemma.

Feedback on vague idea

- Problem 1: After deriving theory for 1-bit matrix completion, finding good data to test the method on.
- Bias towards data on which my method works well.
- Problem 2: After getting the 1-bit matrix data for learning analytics, finding the best method to use to analyze the data.
- Bias towards using my own method.

Feedback on vague idea

- Problem 1: After deriving theory for 1-bit matrix completion, finding good data to test the method on.
- Bias towards data on which my method works well.
- Problem 2: After getting the 1-bit matrix data for learning analytics, finding the best method to use to analyze the data.
- Bias towards using my own method.

Solution: Large online problem bank?

- Algorithms people submit code which should work out of the box.
- It is tested across a broad array of problems.
- A scientist analyzing a data set can find similar classes of data sets and has access to the code to try.

Thank you!

www.yanivplan.com

