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Low-rank matrices

Example: Netflix matrix

’ , M;; = How much user i likes movie j
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Low-rank matrices

Example: Netflix matrix
M; ; = How much user i likes movie j
Mzi Mo Msz Mzg |7 1

Rank-1 model:
@ a; = Amount of action in movie j
@ x; = How much user i/ likes action

M,-,J-:x,-'aj
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Low-rank matrices

Example: Netflix matrix

M; ; = How much user i likes movie j
Mzi Mo Msz Mzg |7 1

Rank-1 model:

@ a; = Amount of action in movie j
@ x; = How much user i/ likes action

M,"J' = X aj
Rank-2 model:

@ b; = Amount of comedy in movie j
@ y; = How much user i likes comedy

M;J:x;-aj—i-y;-bj
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Low-rank assumption

@ The number of characteristics that determine user preferences should
be smaller than the number of movies or users.

@ M should depend linearly on the characteristics:

M;; # exp(x; - aj).

@ These characteristics need not be known.
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Matrix completion

Matrix completion: Completion of M from a subset of the entries.

7 My 7 Myi Mo M3
? ? M2 3 Matrix Completion M2 1 M2 2 M2 3
3 } 9 9 9
M1 7 M3 M1 Mo M3
Ms1 Maor 7 My1 Muo M3

[Incomplete set of researchers: Srebro, Fazel, Candés, Recht, Rennie,
Jaakkola, Montanari, Soo, Wainwright, Negahban, Yu, Koltchinskii,
Lounici, Tsybakov, Klopp, Cai, Zhou, P.,... 2004-present]
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Matrix completion

Matrix completion: Completion of M from a subset of the entries.

7 My 7 Myi Mo M3
? ? M2 3 Matrix Completion M2 1 M2 2 M2 3

3 } b 9 9
M1 7 M3 M1 Mo M3
Ms1 Maor 7 My1 Muo M3

[Incomplete set of researchers: Srebro, Fazel, Candés, Recht, Rennie,
Jaakkola, Montanari, Soo, Wainwright, Negahban, Yu, Koltchinskii,
Lounici, Tsybakov, Klopp, Cai, Zhou, P.,... 2004-present]

Imputation: Dealing with incomplete statistical data [Rubin, Little 1987;
Daniels, Hogan 2009].

o Case deletion.

@ Mean imputation

@ Regression mean imputation.

@ Multiple Imputation.

@ Bayesian factor models.
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One-bit matrix completion:
Motivation




Binary data with missing entries

Senate Voting

Senate bills

© -
? ® ? ? ?
Senators ? ? ? @ @
? @ @ ? ?
@ » -
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Binary data with missing entries

Mathoverflow

Math questions

2 © ©
© . ©
©@ 3

7 ?
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Math enthusiasts ? ®
» ©
@ -
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Binary data with missing entries

Pandora

Songs

People @
?

» ©
???@@
2 ©




Binary data with missing entries

Researchers
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Research literature
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Binary data with missing entries

Netflix

Movies
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Binary data with missing entries

Reddit

Articles

People @
?

» ©
???@@
2 ©




Binary data with missing entries

Incomplete binary survey

Survey questions
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Binary data with missing entries

Sensor triangulation

Sensors

Sensors
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Binary data with missing entries

Senate Voting

Senate bills
? ? ? @ @
Q.. 0 0
Y — Senators ? ® @ ? ?
? ® ? ? ?
© ? ? 7 @




Q: Low-rank model?

A: A classical numerical experiment with
voting data.
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Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.
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Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

(f) First singular vector of Y
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Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

(h) First singular vector of Y (i) Senate party affiliations
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Senate voting

Y: Voting history of US senators on 299 bills from 2008-2010.

(j) First singular vector of Y (k) Senate party affiliations

- A low-rank model?

e What matrix has low rank?
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Low-rank assumption

Consider the senate voting example.

@ Can the voting preferences of a certain senator be predicted given
only a few characteristics of this senator?

@ Does Y depend linearly on these characteristics?
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Generalized linear model

“Preference” Matrix




Generalized linear model

<
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“Preference” Matrix
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00000
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Binary data matrix,

<

@ M is unknown. M has (approximately) low rank.

e f:R —[0,1] is a known function (e.g., the logistic curve).
o McRI*IY ¢ {© 019




Generalized linear model

&
M P(vij=©)=f(M)) : ?
?

?
72 ? 2
“Preference” Matrix ? ? @ ? ?

Incomplete binary matrix, Y

M is unknown. M has (approximately) low rank.

f:R —[0,1] is a known function (e.g., the logistic curve).
M c RI*4Y € {©,0}9%9.

Qc{1,2,...,d} x{1,2,...,d}. You see Yq.
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Latent variable formulation

@ ifM;;+2Z;>0
e R 1= R
T M+ 4 <

@ Z is an iid noise matrix.
o f(x): =P (Z11 > —x).
@ You see Yq.
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Main assumption, main goal

Goal: Efficiently approximate M and/or f(

Data:

Yo

M).

Assumption: M has (approximately) low rank.
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Approximately low-rank

Assumption:

M € conv(rank-r matrices with Frobenius norm d)
€ (Nuclear-norm ball) - dv/r

= M|, < dvr.

o [IM[l, =3 ;0i(M) = [[(o1,02,...,0d)l;-
@ Robust extension of the rank [Chatterjee 2013].
o Facilitates convex programming reconstruction.

Figure: Nuclear-norm ball in high dimensions
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Maximum likelihood estimation

Take our estimate M be the solution to the following convex program:
1
max Foy(X) such that 4 X, <Vr

@ Foy : log-likelihood function.
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Estimation of the distribution, (M)

Theorem (Upper bound achieved by convex programming)

Let f be the logistic function. Assume that L |M||, < \/r. Suppose the

sampling set is chosen at random with E |Q2| = m > dlog(d). Then with
high probability,

2 ZdH(f (M;;))? < C min (\/g7 1) )

o du(p,q)? :=(v/p—3)?+ (VI—p—I—q)? = squared Hellinger

distance.

v

Is this bound tight?
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Estimation of the distribution, (M)

Theorem (Upper bound achieved by convex programming)

Let f be the logistic function. Assume that % 5 IM|l, < /r. Suppose the
sampling set is chosen at random with E |Q] = m > dlog(d). Then with
high probability,

dZZdH M (M j))? <Cm|n(\/§,1>.

Theorem (Lower bound achievable by any estimator)

In the setup of the above theorem,

d
inf supE 2Zd"’ )f(M,J)) >cm|n< r,l).

M(Y) M i
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Assumption: |M||_ < a.

M #

O O O O Q
O O O O o
O O O O o
O O O O O
O O O O O

1
max Fay(X) such that - IX||, <+r and |X], <«
«

Yaniv Plan (U. Mich.) One-bit matrix completion



1-bit matrix completion vs noisy matrix completion: error

bounds

o let YO =M+ 2Z.

@ Z is a matrix with iid Gaussian noise with variance 2.
o Let
o 0
Yij = sign(Yi;).

o = f follows the probit model.

Question: How much harder is it to estimate M from Y in
comparison to estimating M from Y°?

Two regimes: High SNR and low SNR.
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Case 1: 0 < « (high signal-to-noise ratio).

Theorem (Upper bound, convex programming, quantized input, Y)

Let f be the probit function. Assume that —[|[M||, < \/r and

M|, < . Suppose the sampling set is chosen at random with
E|Q = m > dlog(d). Then with high probability,

2
HM MH < Ca? exp<a> E

202 m

A\

Theorem (Lower bound, achievable by any estimator, unquantized

input)

In the setup of the above theorem, and under mild technical

conditions,
2 rd
> cooy| —.
F m

M(Y0) M
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Case 2: 0 > « (low signal-to-noise ratio).

Theorem (Upper bound, convex programming, quantized input, Y)

Let f be the probit function. Assume that -~ |M||, < \/r and

M|, < . Suppose the sampling set is chosen at random with
E|Q] = m > dlog(d). Then with high probability,

N 2
s M-m| < Cooyf 2.
F m

Theorem (Lower bound, achievable by any estimator, unquantized

input)

In the setup of the above theorem, and under mild technical

conditions,
d
inf sup[E—HM MH > Cam/r
M(Y?) M m
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Dithering: noise helps!

Conclusion:

@ When the noise is larger than the signal, quantizing to a single bit
loses almost no information!

@ When the noise is (significantly) smaller than the signal, increasing
the noise improves recovery from quantized measurements!
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Why we need noise

Take
Yij = sign(Mij + Z;)

Now remove the noise!
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Why we need noise

Take
Y,"j = sign(l\/l;J)

Claim: Accurate reconstruction of M is impossible!
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Why we need noise

Take
Y:j = sign(M;)
Suppose that
A A
A A A A
M= A A A
A A A A
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Why we need noise

Take
Y, = sign(M:)
Suppose that
A A A
A A A A
M= AA A A
A A A A

= Yij = sign(})
= Approximation of M is impossible even if every entry of Y is seen.

Yaniv Plan (U. Mich.) One-bit matrix completion



Why we need noise

Take
Y,"J' = sign(M,-J)

@ Suppose that we know that M has rank 1 so that M = uv’ for some
two vectors u,v € RY.

o M =iii” leads to exactly the same binary data as M if the signs of @
match the signs of u and similarly for v and v.

@ = Approximation of M is impossible even if every entry of Y is seen.
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Related literature

@ [Srebro - Rennie - Jaakkola et al. 2004] Model free: If an estimate
has low nuclear norm and matches the signs of the observed entries
by a significant margin, then the error on unobserved entries is small.

@ Our results:

o If the model is correct, then the overall error is nearly minimax.
o Noise helps!

e [Cai-Zhou 2013]: Extension to non-uniform sampling by using max
norm.
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Let

Theorem (Upper bound achieved by convex programming)

d2(F(M), F(M)) < CaLa\/g.

\

Theorem (Lower bound achievable by any estimator)

5 ~ o [rd
di(f(M), f(M)) > CL_\/%

1

v
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general f

Let

L, := sup ()] and Ba = sup M

|x|<a f(X)(l - f(X)) [x|<a (f/(X))z

Theorem (Upper bound achieved by convex programming)

1 > 2 I’d

Theorem (Lower bound achievable by any estimator)
1 > 2 rd
EHM - Mg > Ca,/ﬂ%a\/ o
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Experiments with real data.

One-bit matrix completion



Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

v

)

(a) First singular vector of M
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Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(b) First singular vector of M (c) Senate party affiliations
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Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(d) First singular vector of M (e) Senate party affiliations

(f) First singular vector of Ygq.
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Voting simulation

(g) First singular vector of M (h) Senate party affiliations

v

(j) The first five singular

values of

(i) First singular vector of Ygq. M : 463,216, 40, 32,29
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Voting simulation

Randomly delete 90% of entries.

»

(k) First singular vector of M (1) Senate party affiliations

A,

(m) First singular vector of Yq.

»
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Voting simulation

Randomly delete 95% of entries.

»

(n) First singular vector of M (o) Senate party affiliations

N

(p) First singular vector of Yq.

»
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Voting simulation

With 95% of votes deleted:
86% of missing votes were correctly predicted. (Averaged over 20
experiments.)

Figure: Percent of missed predictions versus model rank r
— Rank-r approximation of Yq
— Nuclear-norm constrained maximum-likelihood estimation
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Movielens data set

@ 100,000 movie ratings on a scale from 1 to 5 (sparsely sampled
matrix).

@ Convert to binary outcomes by comparing each rating to the mean.

@ Training on 95,000 ratings and testing on remainder.

@ One-bit matrix completion: Given +1s and -1s. Evaluate by
checking if we predict the correct sign.

e Standard matrix completion: Given original values from 1 to 5.
Evaluate by checking if the imputed value is above or below the
mean.

- “Standard” matrix completion: 60% accuracy
1: 64% 2: 56% 3: 44% 4: 65% 5: 74%

- Binary matrix completion: 73% accuracy
1: 79% 2: 73% 3: 58% 4: 75% 5: 89%
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Restaurant recommendations

[REU with Gao, Wootters, Vershynin]

Restaurant Satisfaction Survey

This is a fun survey on your tastes in restaurants near campus.
Based on your answers combiried with those of your peers we will determine other restaurants that you would probably enjoy!

1. Whatdoyou think of Sava's? *

T ibenis
I don' t like it.
©T have never been there.

2. What do you think of Gratzi? *
I like it.
OT dor’ t like it.

01 have never been there.

3. What do you think of Jazzy Veggie? *
I like it.

D1 don’ t like it.
I have never been there.

4. What do you think of Jimmy John's? *

@ 100 restaurants, 107 users.
@ 11 yes/no answers per user.
@ > 75% success rate in recommending 1 restaurant per user

(estimated using cross validation).

One-bit matrix completion
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Learning analytics

Problem Library

4. Serves Problem to
/ G O 8 le
Server Drive
Student

1. Accesses

p 5. Submits Answer 2. Queries Il Refers to

8. Returns feedback

6. Stores 7. Statistics
Datain E—'—'
=

Student
Database Problem
Database

I

s |

Figure: Problem Roulette [Evrard et al. 2013, Am. J. Phys.]

Goals:
@ Recommend practice problems to students based on past performance.

@ Learn which practice problems have the best teaching ability.
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Learning analytics

Data from Phys 240:
@ ~ 450 students.
@ ~ 370 challenging multiple-choice problems.
@ ~ 20% of problems answered.

Last answer by each student used for cross validation.
68% of answers correctly predicted.

@ How well do we predict individual probabilities?
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Learning analytics

Data from Phys 240:
@ ~ 450 students.

@ ~ 370 challenging multiple-choice problems.
@ ~ 20% of problems answered.

Last answer by each student used for cross validation.
68% of answers correctly predicted.

@ How well do we predict individual probabilities?

Comparing probabity estimates to experimental proportions
1 T T T T T T T

Yaniv Plan (U. Mich.)
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Methods of proof

Upper bounds: Probability in Banach spaces/random matrix theory

Lower bounds: Information theoretic techniques: Fano's inequality
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Bare-bones sketch of upper bound proof

Recall: Fq y(X) is the log-likelihood of X (we maximize it).
@ For a fixed matrix, X, E(Fqvy(M) — Fo v(X)) = c- D(f(X)[|f(M)).
@ Lemma: the following holds for all X satisfying - || X||, < /r:

|Fay(X) —EFqy(X)| < 6.

@ The maximizer, M satisfies Fy o(M) > Fy o(M).
o

0> Foy (M) — Fax(M) > E(Fay (M) — Fax (M) — 26
= c- D(f(M)[|f(M)) — 25

Thus,

Key step: Proof of lemma.
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Feedback on vague idea

@ Problem 1: After deriving theory for 1-bit matrix completion, finding
good data to test the method on.

o Bias towards data on which my method works well.

@ Problem 2: After getting the 1-bit matrix data for learning analytics,
finding the best method to use to analyze the data.

e Bias towards using my own method.
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Feedback on vague idea

@ Problem 1: After deriving theory for 1-bit matrix completion, finding
good data to test the method on.

o Bias towards data on which my method works well.

@ Problem 2: After getting the 1-bit matrix data for learning analytics,
finding the best method to use to analyze the data.

e Bias towards using my own method.
Solution: Large online problem bank?
@ Algorithms people submit code which should work out of the box.

@ It is tested across a broad array of problems.

@ A scientist analyzing a data set can find similar classes of data sets
and has access to the code to try.
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Thank you!

www.yanivplan.com
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