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Low-rank matrices

Example: Netflix matrix



M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

M4,1 M4,2 M4,3 M4,4


 , Mi ,j = How much user i likes movie j

Rank-1 model:
aj = Amount of action in movie j
xi = How much user i likes action

Mi ,j = xi · aj
Rank-2 model:

bj = Amount of comedy in movie j
yi = How much user i likes comedy

Mi ,j = xi · aj + yi · bj
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Low-rank assumption

The number of characteristics that determine user preferences should
be smaller than the number of movies or users.

M should depend linearly on the characteristics:

Mi ,j 6= exp(xi · aj).

These characteristics need not be known.
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Matrix completion

Matrix completion: Completion of M from a subset of the entries.



? M1,2 ?
? ? M2,3

M3,1 ? M3,3

M4,1 M4,2 ?




Matrix Completion−−−−−−−−−−−→




M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

M4,1 M4,2 M4,3




[Incomplete set of researchers: Srebro, Fazel, Candès, Recht, Rennie,
Jaakkola, Montanari, Soo, Wainwright, Negahban, Yu, Koltchinskii,
Lounici, Tsybakov, Klopp, Cai, Zhou, P.,... 2004-present]

Imputation: Dealing with incomplete statistical data [Rubin, Little 1987;
Daniels, Hogan 2009].

Case deletion.

Mean imputation

Regression mean imputation.

Multiple Imputation.

Bayesian factor models.
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One-bit matrix completion:
Motivation
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Binary data with missing entries

Senate Voting

Senate bills

Senators




§ ? © ? ©
? § ? ? ?

? ? ? © §
? § © ? ?

© ? ? ? ©
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Binary data with missing entries

Mathoverflow

Math questions

Math enthusiasts




? ? ? © ©
§ ? © ? ©

? § © ? ?

? § ? ? ?

© ? ? ? ©
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Binary data with missing entries

Pandora

Songs

People




§ ? © ? ©
? ? ? © §
§ ? ? ? ©

? § © ? ?

? § ? ? ?
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Binary data with missing entries

Research literature

Papers

Researchers




§ ? © ? ©
? § ? ? ?

? ? ? © §
? § © ? ?

© ? ? ? ©
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Binary data with missing entries

Netflix

Movies

People




? ? ? © ©
§ ? © ? ©

? § © ? ?

? § ? ? ?

© ? ? ? ©
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Binary data with missing entries

Reddit

Articles

People




§ ? © ? ©
? ? ? © §
§ ? ? ? ©

? § © ? ?

? § ? ? ?
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Binary data with missing entries

Incomplete binary survey

Survey questions

People




§ ? © ? ©
? § ? ? ?

? ? ? © §
? § © ? ?

© ? ? ? ©
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Binary data with missing entries

Sensor triangulation

Sensors

Sensors




© © § © §
© © © § §
§ © © § ©
© § § © ©
§ § © © ©
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Binary data with missing entries

Senate Voting

Senate bills

Y = Senators




? ? ? © ©
§ ? © ? ©

? § © ? ?

? § ? ? ?

© ? ? ? ©
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Q: Low-rank model?

A: A classical numerical experiment with
voting data.
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Senate voting

Y : Voting history of US senators on 299 bills from 2008-2010.

(d) First singular vector of Y (e) Senate party affiliations

⇒A low-rank model?
• What matrix has low rank?
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Senate voting

Y : Voting history of US senators on 299 bills from 2008-2010.

(f) First singular vector of Y

(g) Senate party affiliations

⇒A low-rank model?
• What matrix has low rank?
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Senate voting

Y : Voting history of US senators on 299 bills from 2008-2010.

(h) First singular vector of Y (i) Senate party affiliations

⇒A low-rank model?
• What matrix has low rank?
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Senate voting

Y : Voting history of US senators on 299 bills from 2008-2010.

(j) First singular vector of Y (k) Senate party affiliations

⇒A low-rank model?
• What matrix has low rank?
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Low-rank assumption

Consider the senate voting example.

Can the voting preferences of a certain senator be predicted given
only a few characteristics of this senator?

Does Y depend linearly on these characteristics?

Yaniv Plan (U. Mich.) One-bit matrix completion 9 / 31



Generalized linear model




M




“Preference” Matrix

P

(
Yi,j=©

)
=f (Mi,j )

−−−−−−−−−−−−−−−−→




§ © © © §
© © § § §
§ © © § ©
§ © § © ©
§ § © © ©




Binary data matrix,Y

M is unknown. M has (approximately) low rank.

f : R→ [0, 1] is a known function (e.g., the logistic curve).

M ∈ Rd×d ,Y ∈ {©,§}d×d .

Ω ⊂ {1, 2, . . . , d} × {1, 2, . . . , d}. You see YΩ.
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Generalized linear model
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“Preference” Matrix

P

(
Yi,j=©

)
=f (Mi,j )

−−−−−−−−−−−−−−−−→




§ ? ? ? §
? © ? § ?

? ? © ? ?

? ? § ? ?

? ? © ? ?




Incomplete binary matrix, Y

M is unknown. M has (approximately) low rank.

f : R→ [0, 1] is a known function (e.g., the logistic curve).

M ∈ Rd×d ,Y ∈ {©,§}d×d .

Ω ⊂ {1, 2, . . . , d} × {1, 2, . . . , d}. You see YΩ.
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Latent variable formulation

Yi ,j = sign(Mi ,j + Zi ,j) =




© if Mi ,j + Zi ,j ≥ 0

§ if Mi ,j + Zi ,j < 0

Z is an iid noise matrix.

f (x) := P (Z1,1 ≥ −x).

You see YΩ.
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Main assumption, main goal

Goal: Efficiently approximate M and/or f (M).

Data: YΩ =




§ ? © ? ©
? § ? ? ?

? ? ? © §
? § © ? ?

© ? ? ? ©




.

Assumption: M has (approximately) low rank.
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Approximately low-rank

Assumption:

M ∈ conv(rank-r matrices with Frobenius norm d)

∈ (Nuclear-norm ball) · d
√
r

⇒ ‖M‖∗ ≤ d
√
r .

‖M‖∗ =
∑

i σi (M) = ‖(σ1, σ2, . . . , σd)‖1.

Robust extension of the rank [Chatterjee 2013].

Facilitates convex programming reconstruction.

Figure: Nuclear-norm ball in high dimensions
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Maximum likelihood estimation

Take our estimate M̂ be the solution to the following convex program:

max
X

FΩ,Y(X) such that
1

d
‖X‖∗ ≤

√
r

FΩ,Y : log-likelihood function.
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Estimation of the distribution, f (M)

Theorem (Upper bound achieved by convex programming)

Let f be the logistic function. Assume that 1
d ‖M‖∗ ≤

√
r . Suppose the

sampling set is chosen at random with E |Ω| = m ≥ d log(d). Then with
high probability,

1

d2

∑

i ,j

d2
H(f (M̂i ,j), f (Mi ,j))2 ≤ C min

(√
rd

m
, 1

)
.

dH(p, q)2 := (
√
p −√q)2 + (

√
1− p −√1− q)2 = squared Hellinger

distance.

Is this bound tight?

Theorem (Lower bound achievable by any estimator)

In the setup of the above theorem,

inf
M̂(Y )

sup
M
E

1

d2

∑

i ,j

d2
H(f (M̂i ,j), f (Mi ,j))2 ≥ c min

(√
rd

m
, 1

)
.
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Estimation of M

Assumption: ‖M‖∞ ≤ α.

M 6=




d 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




max
X

FΩ,Y(X) such that
1

dα
‖X‖∗ ≤

√
r and ‖X‖∞ ≤ α
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1-bit matrix completion vs noisy matrix completion: error
bounds

Let Y0 := M + Z.

Z is a matrix with iid Gaussian noise with variance σ2.

Let
Yi ,j := sign(Y 0

i ,j).

⇒ f follows the probit model.

Question: How much harder is it to estimate M from Y in
comparison to estimating M from Y0?

Two regimes: High SNR and low SNR.
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Case 1: σ ≤ α (high signal-to-noise ratio).

Theorem (Upper bound, convex programming, quantized input, Y)

Let f be the probit function. Assume that 1
dα
‖M‖∗ ≤

√
r and

‖M‖∞ ≤ α. Suppose the sampling set is chosen at random with
E |Ω| = m ≥ d log(d). Then with high probability,

1

d2

∥∥∥M̂−M
∥∥∥

2

F
≤ Cα2 exp

(
α2

2σ2

)√
rd

m
.

Theorem (Lower bound, achievable by any estimator, unquantized
input)

In the setup of the above theorem, and under mild technical
conditions,

inf
M̂(Y 0)

sup
M
E

1

d2

∥∥∥M̂−M
∥∥∥

2

F
≥ cασ

√
rd

m
.
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Case 2: σ ≥ α (low signal-to-noise ratio).

Theorem (Upper bound, convex programming, quantized input, Y)

Let f be the probit function. Assume that 1
dα
‖M‖∗ ≤

√
r and

‖M‖∞ ≤ α. Suppose the sampling set is chosen at random with
E |Ω| = m ≥ d log(d). Then with high probability,

1

d2

∥∥∥M̂−M
∥∥∥

2

F
≤ Cασ

√
rd

m
.

Theorem (Lower bound, achievable by any estimator, unquantized
input)

In the setup of the above theorem, and under mild technical
conditions,

inf
M̂(Y 0)

sup
M
E

1

d2

∥∥∥M̂−M
∥∥∥

2

F
≥ cασ

√
rd

m
.
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Dithering: noise helps!

Conclusion:

When the noise is larger than the signal, quantizing to a single bit
loses almost no information!

When the noise is (significantly) smaller than the signal, increasing
the noise improves recovery from quantized measurements!

−3 −2 −1 0 1
0.2

0.4

0.6

0.8

1

1.2

1.4

‖M̂
−

M
‖2 F

‖M
‖2 F

Program in (3)

Program in (4)

log10 σ
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Why we need noise

Take
Yi ,j = sign(Mi ,j + Zi ,j)

Now remove the noise!
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Why we need noise

Take
Yi ,j = sign(Mi ,j)

Claim: Accurate reconstruction of M is impossible!
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Why we need noise

Take
Yi ,j = sign(Mi ,j)

Suppose that

M =




λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ


 .
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Why we need noise

Take
Yi ,j = sign(Mi ,j)

Suppose that

M =




λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ


 .

⇒ Yi ,j = sign(λ)
⇒ Approximation of M is impossible even if every entry of Y is seen.
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Why we need noise

Take
Yi ,j = sign(Mi ,j)

Suppose that we know that M has rank 1 so that M = uvT for some
two vectors u, v ∈ Rd .

M̃ = ũṽT leads to exactly the same binary data as M if the signs of ũ
match the signs of u and similarly for ṽ and v.

⇒ Approximation of M is impossible even if every entry of Y is seen.
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Related literature

[Srebro - Rennie - Jaakkola et al. 2004] Model free: If an estimate
has low nuclear norm and matches the signs of the observed entries
by a significant margin, then the error on unobserved entries is small.

Our results:

If the model is correct, then the overall error is nearly minimax.
Noise helps!

[Cai-Zhou 2013]: Extension to non-uniform sampling by using max
norm.
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general f

Let

Lα := sup
|x |≤α

|f ′(x)|
f (x)(1− f (x))

and βα := sup
|x |≤α

f (x)(1− f (x))

(f ′(x))2

.

Theorem (Upper bound achieved by convex programming)

d2
H(f (M̂), f (M)) ≤ CαLα

√
rd

m
.

Theorem (Lower bound achievable by any estimator)

d2
H(f (M), f (M̂)) ≥ c

α

L1

√
rd

m
.
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Lα := sup
|x |≤α

|f ′(x)|
f (x)(1− f (x))

and βα := sup
|x |≤α

f (x)(1− f (x))

(f ′(x))2
.

Theorem (Upper bound achieved by convex programming)

1

d2
‖M̂−M‖2

F ≤ CαLαβα

√
rd

m
.

Theorem (Lower bound achievable by any estimator)

1

d1d2
‖M− M̂‖2

F ≥ cα
√
β 3

4
α

√
rd

m
.
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Experiments with real data.
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Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(a) First singular vector of M̂
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Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(b) First singular vector of M̂ (c) Senate party affiliations
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Voting simulation

Binary data: Voting history of US senators on 299 bills from 2008-2010.

(d) First singular vector of M̂ (e) Senate party affiliations

(f) First singular vector of YΩ.

Yaniv Plan (U. Mich.) One-bit matrix completion 24 / 31



Voting simulation

(g) First singular vector of M̂ (h) Senate party affiliations

(i) First singular vector of YΩ.

(j) The first five singular
values of
M̂ : 463, 216, 40, 32, 29
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Voting simulation

Randomly delete 90% of entries.

(k) First singular vector of M̂ (l) Senate party affiliations

(m) First singular vector of YΩ.
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Voting simulation

Randomly delete 95% of entries.

(n) First singular vector of M̂ (o) Senate party affiliations

(p) First singular vector of YΩ.
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Voting simulation

With 95% of votes deleted:
86% of missing votes were correctly predicted. (Averaged over 20

experiments.)

Figure: Percent of missed predictions versus model rank r
— Rank-r approximation of YΩ

— Nuclear-norm constrained maximum-likelihood estimation
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MovieLens data set

100,000 movie ratings on a scale from 1 to 5 (sparsely sampled
matrix).

Convert to binary outcomes by comparing each rating to the mean.

Training on 95,000 ratings and testing on remainder.

One-bit matrix completion: Given +1s and -1s. Evaluate by
checking if we predict the correct sign.

Standard matrix completion: Given original values from 1 to 5.
Evaluate by checking if the imputed value is above or below the
mean.

- “Standard” matrix completion: 60% accuracy
1: 64% 2: 56% 3: 44% 4: 65% 5: 74%

- Binary matrix completion: 73% accuracy
1: 79% 2: 73% 3: 58% 4: 75% 5: 89%
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Restaurant recommendations

[REU with Gao, Wootters, Vershynin]

100 restaurants, 107 users.
11 yes/no answers per user.
> 75% success rate in recommending 1 restaurant per user
(estimated using cross validation).
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Learning analytics

Figure: Problem Roulette [Evrard et al. 2013, Am. J. Phys.]

Goals:

Recommend practice problems to students based on past performance.

Learn which practice problems have the best teaching ability.
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Learning analytics

Data from Phys 240:

∼ 450 students.

∼ 370 challenging multiple-choice problems.

∼ 20% of problems answered.

Last answer by each student used for cross validation.
68% of answers correctly predicted.

How well do we predict individual probabilities?
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Methods of proof

Upper bounds: Probability in Banach spaces/random matrix theory

Lower bounds: Information theoretic techniques: Fano’s inequality
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Bare-bones sketch of upper bound proof

Recall: FΩ,Y(X) is the log-likelihood of X (we maximize it).

1 For a fixed matrix, X, E(FΩ,Y(M)− FΩ,Y(X)) = c · D(f (X)||f (M)).

2 Lemma: the following holds for all X satisfying 1
dα ‖X‖∗ ≤

√
r :

|FΩ,Y(X)− EFΩ,Y(X)| ≤ δ.

3 The maximizer, M̂ satisfies FY,Ω(M̂) ≥ FY,Ω(M).

4

0 ≥ FΩ,Y(M)− FΩ,Y(M̂) ≥ E(FΩ,Y(M)− FΩ,Y(M̂))− 2δ

= c · D(f (M̂)||f (M))− 2δ

Thus,

D(f (M̂)||f (M)) ≤ 2

c
δ.

Key step: Proof of lemma.
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Feedback on vague idea

Problem 1: After deriving theory for 1-bit matrix completion, finding
good data to test the method on.

Bias towards data on which my method works well.

Problem 2: After getting the 1-bit matrix data for learning analytics,
finding the best method to use to analyze the data.

Bias towards using my own method.

Solution: Large online problem bank?

Algorithms people submit code which should work out of the box.

It is tested across a broad array of problems.

A scientist analyzing a data set can find similar classes of data sets
and has access to the code to try.
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Thank you!
www.yanivplan.com
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