# Efficient projection onto the parity polytope and its application to linear programming decoding 

Stark Draper<br>joint work with Siddharth Barman, Xishuo Liu and Ben Recht



Communications \& Signal Processing Seminar
University of Michigan
17 October 2013

## Setup: consider a length- $d$ single parity-check code

A length-d binary vector x is a codeword,

$$
x \in \mathcal{C} \text { if } \underbrace{[11 \ldots 1]}_{d \text { ones }} x=0
$$

or, equivalently, if

$$
\mathbf{x} \in \mathbb{P}_{d}
$$

where $\mathbb{P}_{d}=\{$ all length- $d$ binary vectors of even weight $\}$

In other words: even-weight vertices of the $d$-dimension hypercube

## Goal: efficient projection onto $\operatorname{conv}\left(\mathbb{P}_{d}\right)$, "parity polytope"

The parity polytope $\mathbb{P P}_{d}=\operatorname{conv}\left(\mathbb{P}_{d}\right)$, the convex hull of $\mathbb{P}_{d}$


- Number of vertices of $\mathbb{P P}_{d}$ is $2^{d-1}$; if $d=31$ about 1 billion


## Goal: efficient projection onto $\operatorname{conv}\left(\mathbb{P}_{d}\right)$, "parity polytope"

The parity polytope $\mathbb{P P}_{d}=\operatorname{conv}\left(\mathbb{P}_{d}\right)$, the convex hull of $\mathbb{P}_{d}$


- Number of vertices of $\mathbb{P P}_{d}$ is $2^{d-1}$; if $d=31$ about 1 billion
- The algorithm we develop can project any vector $\mathbf{v} \in \mathbb{R}^{d}$ onto $\mathbb{P P}_{d}$ in log-linear time, $O(d \log d)$, complexity of sort


## Goal: efficient projection onto conv $\left(\mathbb{P}_{d}\right)$, "parity polytope"

The parity polytope $\mathbb{P P}_{d}=\operatorname{conv}\left(\mathbb{P}_{d}\right)$, the convex hull of $\mathbb{P}_{d}$


- Number of vertices of $\mathbb{P P}_{d}$ is $2^{d-1}$; if $d=31$ about 1 billion
- The algorithm we develop can project any vector $\mathbf{v} \in \mathbb{R}^{d}$ onto $\mathbb{P P}_{d}$ in log-linear time, $O(d \log d)$, complexity of sort
- We use the projection to develop a new LP decoding technique via the Alternating Directions Method of Multipliers (ADMM)


## Agenda

## Background and Problem Setup

- LP decoding formulation: a relaxation of ML


## Optimization Framework

- The alternating direction method of multipliers (ADMM)


## Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope


## Experimental results

- Various codes \& parameter settings
- Penalized decoder


## Maximum likelihood (ML) decoding: memoryless channels

- Given codebook $\mathcal{C}$ and received sequence $y$
- ML decoding picks a codeword $\mathbf{x} \in \mathcal{C}$ to:

$$
\text { maximize } \operatorname{Pr}(\text { received } \mathbf{y} \mid \text { sent } \mathbf{x})
$$

I
maximize $\quad \prod_{i} p_{Y \mid X}\left(y_{i} \mid x_{i}\right) \quad$ subject to $\mathrm{x} \in \mathcal{C}$
$\Uparrow$
maximize $\sum_{i} \log p_{Y \mid X}\left(y_{i} \mid x_{i}\right) \quad$ subject to $\mathbf{x} \in \mathcal{C}$

## Maximum likelihood (ML) decoding: binary inputs

- Objective for binary input channel:

$$
\begin{aligned}
& \sum_{i} \log p_{Y \mid X}\left(y_{i} \mid x_{i}\right) \\
& =\sum_{i}\left[\log \frac{p_{Y \mid X}\left(y_{i} \mid x_{i}=1\right)}{p_{Y \mid X}\left(y_{i} \mid x_{i}=0\right)} x_{i}+\log p_{Y \mid X}\left(y_{i} \mid x_{i}=0\right)\right]
\end{aligned}
$$

- $\gamma_{i}$ is negative log-likelihood ratio of $i$ th symbol, e.g., if BSC- $p$ :

$$
\gamma_{i}=\left\{\begin{array}{l}
\log \frac{p}{1-p} \text { if } y_{i}=1 \\
\log \frac{1-p}{p} \text { if } y_{i}=0
\end{array}\right.
$$

- ML decoding: linear objective, integer constraints

$$
\operatorname{minimize} \sum_{i} \gamma_{i} x_{i} \text { s.t. } \mathbf{x} \in \mathcal{C}
$$

## Specialize to binary linear codes

$\mathbf{x} \in \mathcal{C}$ iff all parity checks have even parity. Factor graph:
Parity Checks $\left(x_{1}, x_{2}, x_{3}\right)\left(x_{1}, x_{3}, x_{4}\right)\left(x_{2}, x_{5}, x_{6}\right)\left(x_{4}, x_{5}, x_{6}\right)$


Codeword Bits $\begin{array}{lllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$

- Let $d \times n$ matrix $P_{j}$ select variables neighboring $j$ th parity check
- Examples: $P_{1} \mathbf{x}=\left(x_{1} x_{2} x_{3}\right), P_{3} \mathbf{x}=\left(x_{2} x_{5} x_{6}\right)$
- Example:

$$
P_{3} x=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
x_{2} \\
x_{5} \\
x_{6}
\end{array}\right]
$$

## For simplicity: consider graphs of check degree d

Example: $d=3$
Parity Checks $\left(x_{1}, x_{2}, x_{3}\right)\left(x_{1}, x_{3}, x_{4}\right)\left(x_{2}, x_{5}, x_{6}\right)\left(x_{4}, x_{5}, x_{6}\right)$


- Let $d \times n$ matrix $P_{j}$ select variables neighboring $j$ th parity check
- Examples: $P_{1} \mathbf{x}=\left(x_{1} x_{2} x_{3}\right), P_{3} \mathbf{x}=\left(x_{2} x_{5} x_{6}\right)$
- $\mathbb{P}_{d}=\{$ all length- $d$ binary vectors of even weight $\}$


## Binary linear codes

$$
\mathbf{x} \in \mathcal{C} \text { if and only if } P_{j} \mathbf{x} \in \mathbb{P}_{d} \text { for all } j
$$

## Relax $\mathbb{P}_{d}$ to $\mathbb{P P}_{d}$ to get a Linear Program (LP)

ML Decoding: an integer program with a linear objective

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \gamma_{i} x_{i} \\
\text { subject to } & P_{j} \mathbf{x} \in \mathbb{P}_{d} \forall j \\
\text { (and } & \mathbf{x} \in\{0,1\}^{n} \text { ) }
\end{aligned}
$$

LP Decoding: relax $\mathbb{P}_{d}$ to $\mathbb{P}_{P_{d}}=\operatorname{conv}\left(\mathbb{P}_{\mathrm{d}}\right)$ for all $j$

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \gamma_{i} x_{i} \\
\text { subject to } & P_{j} \mathrm{x} \in \mathbb{P P}_{d} \forall j \\
\text { and } & \mathbf{x} \in[0,1]^{n}
\end{aligned}
$$

Relaxation due to Feldman, Wainwright, Karger 2005

## Why care about LP decoding?

LP decoding vs. Belief Propagation (BP) decoding:

- BP empirically successful, inherently distributed, takes full advantage of spare code structure but, no convergence guarantees \& BP suffers from error-floor
- LP well understood theoretically, has convergence guarantees, not observed to suffer from error-floor, ML certificate property, able to tighten relaxation to approach ML performance but, generic LP solvers don't efficiently exploit code sparsity


## Why care about projecting onto $\mathbb{P P}_{d}$ ?

Projecting onto $\mathbb{P P}_{d}$ : crucial step in solving the LP using the Alternating Direction Method of Multipliers (ADMM)

- a classic algorithm (mid-70s), efficient, scalable, distributed, convergence guarantees, numerically robust
- decomposes global problem into local subproblems, recombine iteratively (simple scheduling) to find global solution
- simple form today as objective and constraints all linear
- cf. Boyd et al. review in FnT in Machine Learning, 2010.

Prior work on low-complexity LP decoding:

- earliest low-complexity LP decoding results (Vontobel \& Koetter '06, '08) coordinate ascent on "softened" dual
- computational complexity linear in blocklength given good choice of scheduling (Burshtein '08, '09)


## Agenda

## Background and Problem Setup

- LP decoding formulation: a relaxation of ML


## Optimization Framework

- The alternating direction method of multipliers (ADMM)


## Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope


## Experimental results

- Various codes \& parameter settings
- Penalized decoder


## Fitting LP Decoding into ADMM template

LP Decoding:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \gamma_{i} x_{i} \\
\text { subject to } & P_{j} \mathbf{x} \in \mathbb{P P}_{d} \quad \forall j \\
& \mathbf{x} \in[0,1]^{n}
\end{aligned}
$$

To formulate as an ADMM associate "replicas" $z_{j} s$ with each edge:

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{i} \gamma_{i} x_{i} \\
\text { subject to } & \mathbf{z}_{j}=P_{j} \mathbf{x} \quad \forall j \\
& \mathbf{z}_{j} \in \mathbb{P P}_{d} \quad \forall j \\
& \mathbf{x} \in[0,1]^{n}
\end{array}
$$



- Replicas allow us to decompose into small subproblems


## Lagrangian formulation

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i} \gamma_{i} x_{i} \quad \text { subject to } & \mathbf{z}_{j}=P_{j} \times \quad \forall j \\
& \mathbf{z}_{j} \in \mathbb{P}_{d} \quad \forall j \\
& \mathbf{x} \in[0,1]^{n}
\end{array}
$$

Start with regular Lagrangian with multipliers $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$

$$
\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)
$$

## Lagrangian formulation

$$
\begin{array}{llll}
\operatorname{minimize} \quad \sum_{i} \gamma_{i} x_{i} \quad \text { subject to } \quad & \mathbf{z}_{j}=P_{j} \mathbf{x} \forall j \\
& & \mathbf{z}_{j} \in \mathbb{P P}_{d} \forall j \\
& \mathbf{x} \in[0,1]^{n}
\end{array}
$$

Start with regular Lagrangian with multipliers $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$

$$
\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)
$$

ADMM works with an augmented Lagrangian:

$$
L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda):=\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2}
$$

Effect is to smooth the dual problem, accelerating convergence

## Alternating Direction Method of Multipliers

Round-robin update of $\mathbf{x}$ then $\mathbf{z}$ then $\lambda$ until converge:

$$
L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda):=\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2}
$$

ADMM Update Steps:

$$
\begin{aligned}
& \mathbf{x}^{k+1}:=\operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} L_{\mu}\left(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}\right) \\
& \mathbf{z}^{k+1}:=\operatorname{argmin}_{\mathbf{z} \in \mathcal{Z}} L_{\mu}\left(\mathbf{x}^{k+1}, \mathbf{z}, \lambda^{k}\right) \\
& \lambda_{j}^{k+1}:=\lambda_{j}^{k}+\mu\left(P_{j} \mathbf{x}^{k+1}-\mathbf{z}_{j}^{k+1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{X} & =[0,1]^{n} \\
\mathcal{Z} & =\underbrace{\mathbb{P P}_{d} \times \ldots \times \mathbb{P P}_{d}}_{\text {number of checks }}
\end{aligned}
$$

- Updates: msg-passing on a "Forney-style" factor graph


## ADMM x-Update: turns out to be (almost) averaging

With $\mathbf{z}$ and $\lambda$ fixed the $\mathbf{x}$-updates are:

$$
\begin{array}{rrr}
\text { minimize } & L_{\mu}\left(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}\right) \quad \text { subject to } \quad \mathbf{x} \in[0,1]^{n} \text { where } \\
L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda):=\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2}
\end{array}
$$

## ADMM x-Update: turns out to be (almost) averaging

With $\mathbf{z}$ and $\lambda$ fixed the $\mathbf{x}$-updates are:

$$
\begin{aligned}
& \operatorname{minimize} L_{\mu}\left(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}\right) \quad \text { subject to } \quad \mathbf{x} \in[0,1]^{n} \text { where } \\
& L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda):=\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2}
\end{aligned}
$$

Partial derivatives of a quadratic form (and apply box constraints)

$$
\frac{\partial}{\partial x_{i}} L_{\mu}\left(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}\right)=0
$$

## ADMM x-Update: turns out to be (almost) averaging

With $\mathbf{z}$ and $\lambda$ fixed the $\mathbf{x}$-updates are:

$$
\operatorname{minimize} L_{\mu}\left(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}\right) \quad \text { subject to } \quad \mathbf{x} \in[0,1]^{n} \text { where }
$$

$$
L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda):=\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2}
$$

Partial derivatives of a quadratic form (and apply box constraints)

$$
\frac{\partial}{\partial x_{i}} L_{\mu}\left(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}\right)=0
$$

Get component-wise (averaging) updates:

$$
x_{i}=\Pi_{[0,1]}\left(\frac{1}{\left|\mathcal{N}_{v}(i)\right|}\left(\sum_{j \in \mathcal{N}_{v}(i)}\left(\mathbf{z}_{j}^{(i)}-\frac{1}{\mu} \lambda_{j}^{(i)}\right)-\frac{1}{\mu} \gamma_{i}\right)\right)
$$

$\mathcal{N}_{v}(i)$ : set of parity checks neighboring variable $i$.
$\mathbf{z}_{j}^{(i)}$ : component of the $j$ th replica associated with $x_{i}$.

## ADMM z-Update

Recall:

$$
L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda):=\gamma^{T} \mathbf{x}+\sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2}
$$

z-update: with $\mathbf{x}$ and $\lambda$ fixed we want to solve

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j} \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2} \sum_{j}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2} \\
\text { subject to } & \mathbf{z}_{j} \in \mathbb{P P}_{d} \forall j
\end{aligned}
$$

The minimization is separable in $j$ : for each $j$ we need to solve

$$
\begin{aligned}
\operatorname{minimize} & \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2} \\
\text { subject to } & \mathbf{z}_{j} \in \mathbb{P P}_{d}
\end{aligned}
$$

## ADMM $\mathbf{z}_{j}$-Update: project onto parity polytope

$\mathbf{z}_{j}$-update:

$$
\begin{aligned}
\operatorname{minimize} & \lambda_{j}^{T}\left(P_{j} \mathbf{x}-\mathbf{z}_{j}\right)+\frac{\mu}{2}\left\|P_{j} \mathbf{x}-\mathbf{z}_{j}\right\|_{2}^{2} \\
\text { subject to } & \mathbf{z}_{j} \in \mathbb{P P}_{d}
\end{aligned}
$$

Setting $\mathbf{v}=P_{j} \mathbf{x}+\lambda_{j} / \mu$ (completing the square) the problem is equivalent to:

$$
\begin{array}{cl}
\operatorname{minimize} & \|\mathbf{v}-\tilde{\mathbf{z}}\|_{2}^{2} \\
\text { subject to } & \tilde{\mathbf{z}} \in \mathbb{P P}_{d}
\end{array}
$$

The primary challenge in ADMM
The z-update requires projecting onto the parity polytope.

## Agenda

## Background and Problem Setup

- LP decoding formulation: a relaxation of ML


## Optimization Framework

- The alternating direction method of multipliers (ADMM)

Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope


## Experimental results

- Various codes \& parameter settings
- Penalized decoder


## Prior characterizations of parity polytope

- Jeroslow (1975)
- Yannakakis (1991) has a quadratic $d^{2}$ characterization
- Feldman et al. (2005) use Yannakakis
- "Standard Polytope" in Feldman uses $2^{d-1}$ linear constraints per parity-check, many not active as exploited in "Adaptive LP Decoding" Taghavi and Siegel (2008)



## Most points in $\mathbb{P P}_{d}$ have multiple representations

By definition:

- $\mathbf{y} \in \mathbb{P P}_{d}$ iff $\mathbf{y}=\sum_{i} \alpha_{i} \mathbf{e}_{i}$
- $\sum_{i} \alpha_{i}=1, \alpha_{i} \geq 0$
- $\mathbf{e}_{i}$ are even-hamming-weight binary vectors of dimension $d$
- Most $\mathbf{y} \in \mathbb{P P}_{d}$ have multiple representations

Example A $(d=6)$ :

$$
\left(\begin{array}{c}
1 \\
1 \\
1 / 2 \\
1 / 2 \\
1 / 4 \\
1 / 4
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

## Most points in $\mathbb{P P}_{d}$ have multiple representations

By definition:

- $\mathbf{y} \in \mathbb{P P}_{d}$ iff $\mathbf{y}=\sum_{i} \alpha_{i} \mathbf{e}_{i}$
- $\sum_{i} \alpha_{i}=1, \alpha_{i} \geq 0$
- $\mathbf{e}_{i}$ are even-hamming-weight binary vectors of dimension $d$
- Most $\mathbf{y} \in \mathbb{P P}_{d}$ have multiple representations

Example B $(d=6)$ :

$$
\left(\begin{array}{c}
1 \\
1 \\
1 / 2 \\
1 / 2 \\
1 / 4 \\
1 / 4
\end{array}\right)=\frac{1}{4}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

## There always exists a "two-slice" representation

## Two-Slice Lemma:

For any $\mathbf{y} \in \mathbb{P P}_{d}$ there exists a representation $\mathbf{y}=\sum_{i} \alpha_{i} \mathbf{e}_{i}$ where

- $\sum_{i} \alpha_{i}=1, \alpha_{i} \geq 0$
- $\mathbf{e}_{i}$ are of only two weights: $r$ or $r+2$ for all $i$
- $r$ is the even integer $r=\left\lfloor\|\mathbf{y}\|_{1}\right\rfloor_{\text {even }}$

Example B is one such representation with $d=6$ and $r=2$ :

## Visualizing properties of $\mathbb{P P}_{d}$ : always between two slices

Example: $d=5$


- Let $\mathbb{P P}_{d}^{r}=\operatorname{conv}\left\{\mathbf{e}_{i} \mid\left\|\mathbf{e}_{i}\right\|_{1}=r\right\}$, a "permutohedron" $\Rightarrow$ easy to characterize using majorization
- Two-slice restated: Any $\mathrm{y} \in \mathbb{P P}_{d}$ is sandwiched between two permutohedrons $\mathbb{P P}_{d}^{r}$ and $\mathbb{P P}_{d}^{r+2}$ where $r=\left\lfloor\|\boldsymbol{y}\|_{1}\right\rfloor_{\text {even }}$


## Majorization: definition \& application to $\mathbb{P P}_{d}^{r}$

Definition: Let $\mathbf{u}$ and $\mathbf{w}$ be $d$-vectors sorted in decreasing order. The vector $\mathbf{w}$ is said to majorize $\mathbf{u}$ if

$$
\begin{aligned}
& \sum_{k=1}^{d} u_{k}=\sum_{k=1}^{d} w_{k} \\
& \sum_{k=1}^{q} u_{k} \leq \sum_{k=1}^{q} w_{k} \quad \forall \quad q, 1 \leq q<d
\end{aligned}
$$

Specialize to $\mathbb{P P}_{d}^{r}$ where $\mathbf{w}=[\underbrace{11 \ldots 1}_{r} \underbrace{00 \ldots 0}_{d-r}]$

$$
\begin{aligned}
& \sum_{k=1}^{d} u_{k}=r \\
& \sum_{k=1}^{q} u_{k} \leq \min (q, r) \quad \forall \quad q, 1 \leq q<d
\end{aligned}
$$

## Majorization \& permutohedrons

Theorem: $\mathbf{u}$ is in the convex hull of all permutations of $\mathbf{w}$ (the permutohedron defined by $\mathbf{w}$ ) if and only if $\mathbf{w}$ majorizes $\mathbf{u}$.

## Majorization \& permutohedrons

Theorem: $\mathbf{u}$ is in the convex hull of all permutations of $\mathbf{w}$ (the permutohedron defined by $\mathbf{w}$ ) if and only if $\mathbf{w}$ majorizes $\mathbf{u}$.

$$
\mathbf{u}=\sum_{i} \beta_{i} \Sigma_{\mathbf{i}} \mathbf{w}
$$

where $\boldsymbol{\Sigma}_{\boldsymbol{i}}$ are permutation matrices and $\beta_{\boldsymbol{i}}$ are weightings

## Majorization \& permutohedrons

Theorem: $\mathbf{u}$ is in the convex hull of all permutations of $\mathbf{w}$ (the permutohedron defined by $\mathbf{w}$ ) if and only if $\mathbf{w}$ majorizes $\mathbf{u}$.

$$
\mathbf{u}=\sum_{i} \beta_{i} \Sigma_{\mathbf{i}} \mathbf{w}
$$

where $\boldsymbol{\Sigma}_{\boldsymbol{i}}$ are permutation matrices and $\beta_{\boldsymbol{i}}$ are weightings
Proving two-slice lemma:

- Use above to characterize each $\mathbb{P P}_{d}^{r}, r$ even, $r \leq d$.
- Express y as a weighted combination of points in $\mathbb{P P}_{d}^{r}$, $1 \leq r \leq d$.
- Show you can set all weightings to zeros except those on $r=\left\lfloor\|\mathbf{y}\|_{1}\right\rfloor_{\text {even }}$ and $r=\left\lfloor\|\mathbf{y}\|_{1}\right\rfloor_{\text {even }}+2$.
- Note that finding $r$ is trivial.

Next: use two-slice lemma to develop projection operation

## Projecting onto the parity polytope

Desired projection:

$$
\begin{aligned}
& \min \|\mathbf{v}-\mathbf{y}\|_{2}^{2} \\
& \text { s.t. } \mathbf{y} \in \mathbb{P P}_{d}
\end{aligned}
$$

## Projecting onto the parity polytope

Desired projection:

$$
\begin{gathered}
\min \|\mathbf{v}-\mathbf{y}\|_{2}^{2} \\
\text { s.t. } \mathbf{y} \in \mathbb{P}_{d}
\end{gathered}
$$

Use two-slice lemma to reformulate as:

$$
\begin{array}{ll}
\min & \|\mathbf{v}-\alpha \mathbf{s}-(1-\alpha) \mathbf{t}\|_{2}^{2} \\
\text { s.t. } & 0 \leq \alpha \leq 1, \quad \mathbf{s} \in \mathbb{P}_{d}^{r}, \mathbf{t} \in \mathbb{P P}_{d}^{r+2}
\end{array}
$$

## Projecting onto the parity polytope

Desired projection:

$$
\begin{gathered}
\min \|\mathbf{v}-\mathbf{y}\|_{2}^{2} \\
\text { s.t. } \mathbf{y} \in \mathbb{P P}_{d}
\end{gathered}
$$

Use two-slice lemma to reformulate as:

$$
\begin{array}{ll}
\min & \|\mathbf{v}-\alpha \mathbf{s}-(1-\alpha) \mathbf{t}\|_{2}^{2} \\
\text { s.t. } & 0 \leq \alpha \leq 1, \quad \mathbf{s} \in \mathbb{P P}_{d}^{r}, \mathbf{t} \in \mathbb{P P}_{d}^{r+2}
\end{array}
$$

We also show (where $\Pi(\cdot)$ is shorthand for projection):

$$
\underbrace{\left\lfloor\left\|\Pi_{[0,1]^{d}}(\mathbf{v})\right\|_{1}\right\rfloor_{\text {even }}}_{\mathbf{r}} \leq\left\|\Pi_{\mathbb{P P}_{d}}(\mathbf{v})\right\|_{1} \leq \underbrace{\left\lfloor\left\|\Pi_{[0,1]^{d}}(\mathbf{v})\right\|_{1}\right\rfloor_{\text {even }}+2}_{\mathbf{r}+2}
$$

in other words, it is trivial to identify the two slices

## Use majorization to simplify problem further

Assume w.l.o.g that $\mathbf{v}$ is sorted and let

$$
\begin{aligned}
& \mathbf{z}=\Pi_{\mathbb{P}_{d}}(\mathbf{v})=\arg \min \|\mathbf{v}-\alpha \mathbf{s}-(1-\alpha) \mathbf{t}\|_{2}^{2} \\
& \text { s.t. } 0 \leq \alpha \leq 1, \mathbf{s} \in \mathbb{P P}_{d}^{r}, \mathbf{t} \in \mathbb{P P}_{d}^{r+2}
\end{aligned}
$$

Constraint set can be restated as
(i) $0 \leq \alpha \leq 1$
(ii) $\sum_{k=1}^{d} z_{k}=\alpha r+(1-\alpha)(r+2)$
(iii) $\sum_{k=1}^{q} z_{k} \leq \alpha \min (q, r)+(1-\alpha) \min (q, r+2) \quad \forall \quad q, 1 \leq q<d$
(iv) $z_{1} \geq z_{2} \geq \ldots \geq z_{d}$

## Combine knowledge of $r$ with first two constraints

From (ii) we have

$$
\begin{equation*}
\sum_{k=1}^{d} z_{k}=\alpha r+(1-\alpha)(r+2) \tag{*}
\end{equation*}
$$

Now we apply the bound from (i) on $\alpha, 0 \leq \alpha \leq 1$ to get

$$
r \leq \sum_{k=1}^{d} z_{k} \leq r+2
$$

## Deal with third constraint

Consider the partial sums of the sorted vectors

$$
\sum_{k=1}^{q} z_{k} \leq \alpha \min (q, r)+(1-\alpha) \min (q, r+2) \quad \forall \quad q, 1 \leq q<d
$$

- For $q \leq r$ ineq. satisfied by box constraints: $0 \leq z_{k} \leq 1 \forall k$
- For $q \geq r+2$ inequalities also satisfied since

$$
\begin{equation*}
\sum_{k=1}^{q} z_{k} \leq \sum_{k=1}^{d} z_{k}=\alpha r+(1-\alpha)(r+2) \tag{*}
\end{equation*}
$$

Hence only need to deal with $q=r+1$, which specializes as

$$
\begin{equation*}
\sum_{k=1}^{r+1} z_{k} \leq \alpha r+(1-\alpha)(r+1)=r+(1-\alpha) \tag{**}
\end{equation*}
$$

## Third constraint (continued...)

Solve (*) for $\alpha$ to find

$$
\alpha=1+\frac{r-\sum_{k=1}^{d} z_{k}}{2}
$$

Finally, substitute into ( $* *$ ) to get

$$
\begin{aligned}
\sum_{k=1}^{r+1} z_{k} & \leq r+(1-\alpha) \\
& =r-\frac{r-\sum_{k=1}^{d} z_{k}}{2}
\end{aligned}
$$

Which becomes

$$
\sum_{k=1}^{r+1} z_{k}-\sum_{k=r+2}^{d} z_{k} \leq r
$$

## Reformulated projection as a quadratic program (QP)

$$
\left.\begin{array}{ll}
\min & \|\mathbf{v}-\alpha \mathbf{s}-(1-\alpha) \mathbf{t}\|_{2}^{2} \\
\text { s.t. } & 0 \leq \alpha \leq 1 \\
& \mathbf{s} \in \mathbb{P P}_{d}^{r} \\
& \mathbf{t}
\end{array}\right) \in \mathbb{P P}_{d}^{r+2} .
$$

$$
\begin{array}{ll}
\min & \|\mathbf{v}-\mathbf{z}\|_{2}^{2} \\
\text { s.t. } & 1 \geq z_{k} \geq 0 \forall k \\
& z_{1} \geq z_{2} \geq \ldots \geq z_{d} \\
& r+2 \geq \sum_{k} z_{k} \geq r \\
& \\
& r \geq \sum_{k=1}^{r+1} z_{k}-\sum_{k=r+2}^{d} z_{k}
\end{array}
$$

## Reformulated projection as a quadratic program (QP)

$$
\begin{array}{lll}
\min \|\mathbf{v}-\alpha \mathbf{s}-(1-\alpha) \mathbf{t}\|_{2}^{2} & \min & \|\mathbf{v}-\mathbf{z}\|_{2}^{2} \\
\text { s.t. } & 0 \leq \alpha \leq 1 & \text { s.t. } \\
& 1 \geq z_{k} \geq 0 \forall k \\
& z_{1} \geq z_{2} \geq \ldots \geq z_{d} \\
\mathbf{t} \in \mathbb{P P}_{d}^{r}, & r+2 \geq \sum_{d}^{r+2} z_{k} \geq r \\
& & \\
& & r \geq \sum_{k=1}^{r+1} z_{k}-\sum_{k=r+2}^{d} z_{k}
\end{array}
$$

- for the QP the KKT conditions are necessary and sufficient
- we develop a linear-time water-filling type algorithm that determines a solution satisfying the KKT conditions

$$
\mathbf{z}^{*}=\Pi_{[0,1]^{d}}(\mathbf{v}-\beta[\underbrace{1 \ldots 1}_{r+1} \underbrace{-1 \ldots-1}_{d-r-1}]) \text { some } \quad \beta_{\mathrm{opt}} \in\left[0, \beta_{\max }\right]
$$

## Agenda

## Background and Problem Setup

- LP decoding formulation: a relaxation of ML


## Optimization Framework

- The alternating direction method of multipliers (ADMM)

Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope


## Experimental results

- Various codes \& parameter settings
- Penalized decoder


## Performance results: two LDPC codes over AWGN



- length-2640, rate-0.5
- $(3,6)$-regular LDPC
- non-saturating BP per Butler \& Siegel (Allerton '11)

- length-1057, rate-0.77
- $(3,13)$-regular LDPC
- observable error floor


## Performance results: random LDPC ensemble over BSC



- results averaged over ensemble of 100 codes
- each a randomly generated length-1002 $(3,6)$-regular LDPC
- all codes had girth at least 4


## Random ensemble: iteration count \& execution time



- iteration count
- ADMM \& BP for:
(i) errors, (ii) avg, (iii) correct

- execution time
- ADMM \& BP for
(i) errors, (ii) avg, (iii) correct


## Understanding LP decoding failures

LP decoding fails to a "pseudocodeword", a non-integer vertex of the fundamental polytope introduced when we relaxed each of the various integer constraints $\mathbb{P}_{d}$ to $\mathbb{P P}_{d}$ in

$$
\min \gamma^{T} x \text { s.t. } P_{j} x \in \mathbb{P}_{P_{d}} \forall j, \quad x \in[0,1]^{\mathrm{n}}
$$



## $\ell_{2}$-penalized ADMM

In order to eliminate pseudocodewords, introduce an $\ell_{2}$-penalty to push the solution towards an integral solution, now solve:

$$
\min \gamma^{T} \mathbf{x}-c\|\mathbf{x}-0.5\|_{2} \text { s.t. } \mathrm{P}_{\mathrm{j}} \mathbf{x} \in \mathbb{P P}_{\mathrm{d}} \forall \mathrm{j}, \mathbf{x} \in[0,1]^{\mathrm{n}}
$$

## $\ell_{2}$-penalized ADMM

In order to eliminate pseudocodewords, introduce an $\ell_{2}$-penalty to push the solution towards an integral solution, now solve:

$$
\min \gamma^{T} \mathbf{x}-c\|\mathbf{x}-0.5\|_{2} \text { s.t. } \mathrm{P}_{\mathrm{j}} \mathbf{x} \in \mathbb{P P}_{\mathrm{d}} \forall \mathrm{j}, \mathbf{x} \in[0,1]^{\mathrm{n}}
$$


[2640,1320] "Margulis" LDPC

[13298, 3296] rate-0.25 LDPC

## Recap \& wrap-up

## Recap:

- LP decoding via ADMM
- main hurdle: efficient projection onto the parity polytope, complexity of sort
- simple scheduling and complexity linear in the block-length
- roughly same execution time as BP
- further improvements via $\ell_{2}$-penalty (alternately $\ell_{1}$-penalty)
- Try it yourself! Documented code available at
https://sites.google.com/site/xishuoliu/codes


## Things to do:

- error floor analysis (LP \& penalized)
- effects of finite precision
- how to implement in hardware
- understand BP/LP low-SNR gap (without penalty)
- other codes: non-binary codes, permutation-based codes


## 2014 IEEE North American School on Information Theory

To be held at the Fields Institute at the University of Toronto 18-21 June 2014


THE FIELDS INSTITUTE

