Efficient projection onto the parity polytope and its application to linear programming decoding

Stark Draper

joint work with Siddharth Barman, Xishuo Liu and Ben Recht

Communications & Signal Processing Seminar University of Michigan 17 October 2013

Setup: consider a length-d single parity-check code

A length-d binary vector **x** is a codeword,

$$\mathbf{x} \in \mathcal{C}$$
 if $[\underbrace{11\ldots 1}_{d \text{ ones}}]\mathbf{x} = 0$

or, equivalently, if

 $\mathbf{x} \in \mathbb{P}_d$

where $\mathbb{P}_d = \{ \text{all length-}d \text{ binary vectors of even weight} \}$

In other words: even-weight vertices of the *d*-dimension hypercube

Goal: efficient projection onto $\operatorname{conv}(\mathbb{P}_d)$, "parity polytope"

The parity polytope $\mathbb{PP}_d = \operatorname{conv}(\mathbb{P}_d)$, the convex hull of \mathbb{P}_d

• Number of vertices of \mathbb{PP}_d is 2^{d-1} ; if d = 31 about 1 billion

Goal: efficient projection onto $\operatorname{conv}(\mathbb{P}_d)$, "parity polytope"

The parity polytope $\mathbb{PP}_d = \operatorname{conv}(\mathbb{P}_d)$, the convex hull of \mathbb{P}_d

- Number of vertices of \mathbb{PP}_d is 2^{d-1} ; if d = 31 about 1 billion
- The algorithm we develop can project any vector $\mathbf{v} \in \mathbb{R}^d$ onto \mathbb{PP}_d in log-linear time, $O(d \log d)$, complexity of sort

Goal: efficient projection onto $\operatorname{conv}(\mathbb{P}_d)$, "parity polytope"

The parity polytope $\mathbb{PP}_d = \operatorname{conv}(\mathbb{P}_d)$, the convex hull of \mathbb{P}_d

- Number of vertices of \mathbb{PP}_d is 2^{d-1} ; if d = 31 about 1 billion
- The algorithm we develop can project any vector $\mathbf{v} \in \mathbb{R}^d$ onto \mathbb{PP}_d in log-linear time, $O(d \log d)$, complexity of sort
- We use the projection to develop a new LP decoding technique via the Alternating Directions Method of Multipliers (ADMM)

Agenda

Background and Problem Setup

• LP decoding formulation: a relaxation of ML

Optimization Framework

• The alternating direction method of multipliers (ADMM)

Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope

Experimental results

- Various codes & parameter settings
- Penalized decoder

Maximum likelihood (ML) decoding: memoryless channels

- $\bullet\,$ Given codebook ${\ensuremath{\mathcal{C}}}$ and received sequence ${\ensuremath{\mathbf{y}}}$
- ML decoding picks a codeword $\textbf{x} \in \mathcal{C}$ to:

```
maximize \Pr(\text{received } \mathbf{y} \mid \text{sent } \mathbf{x})
```

Maximum likelihood (ML) decoding: binary inputs

• Objective for binary input channel:

$$\sum_{i} \log p_{Y|X}(y_i \mid x_i)$$

= $\sum_{i} \left[\log \frac{p_{Y|X}(y_i \mid x_i = 1)}{p_{Y|X}(y_i \mid x_i = 0)} x_i + \log p_{Y|X}(y_i \mid x_i = 0) \right]$

• γ_i is negative log-likelihood ratio of *i*th symbol, e.g., if BSC-*p*:

$$\gamma_i = \begin{cases} \log \frac{p}{1-p} \text{ if } y_i = 1\\ \\ \log \frac{1-p}{p} \text{ if } y_i = 0 \end{cases}$$

• ML decoding: linear objective, integer constraints

minimize
$$\sum_{i} \gamma_{i} x_{i}$$
 s.t. $\mathbf{x} \in \mathcal{C}$

Specialize to binary linear codes

 $\textbf{x} \in \mathcal{C}$ iff all parity checks have even parity. Factor graph:

- Let d×n matrix P_j select variables neighboring jth parity check
 Examples: P₁x = (x₁ x₂ x₃), P₃x = (x₂ x₅ x₆)
- Example:

$$\mathbf{P_{3x}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} x_2 \\ x_5 \\ x_6 \end{bmatrix}$$

For simplicity: consider graphs of check degree d

Example: d = 3

- Let $d \times n$ matrix P_j select variables neighboring jth parity check
- Examples: $P_1 \mathbf{x} = (x_1 x_2 x_3), P_3 \mathbf{x} = (x_2 x_5 x_6)$
- $\mathbb{P}_d = \{ \text{all length-}d \text{ binary vectors of even weight} \}$

Binary linear codes

$$\mathbf{x} \in \mathcal{C}$$
 if and only if $P_j \mathbf{x} \in \mathbb{P}_d$ for all j .

Relax \mathbb{P}_d to \mathbb{PP}_d to get a Linear Program (LP)

ML Decoding: an integer program with a linear objective

$$\begin{array}{ll} \text{minimize} & \sum_{i} \gamma_{i} x_{i} \\ \text{subject to} & P_{j} \mathbf{x} \in \mathbb{P}_{d} \ \forall \ j \\ & (\text{and} \ \mathbf{x} \in \{0,1\}^{n}) \end{array}$$

LP Decoding: relax \mathbb{P}_d to $\mathbb{PP}_d = \operatorname{conv}(\mathbb{P}_d)$ for all j

$$\begin{array}{ll} \text{minimize} & \sum_{i} \gamma_{i} x_{i} \\ \text{subject to} & P_{j} \mathbf{x} \in \mathbb{PP}_{d} \ \forall \ j \\ & \text{and} \quad \mathbf{x} \in [0, 1]^{n} \end{array}$$

Relaxation due to Feldman, Wainwright, Karger 2005

Why care about LP decoding?

LP decoding vs. Belief Propagation (BP) decoding:

• **BP** empirically successful, inherently distributed, takes full advantage of spare code structure

but, no convergence guarantees & BP suffers from error-floor

 LP well understood theoretically, has convergence guarantees, not observed to suffer from error-floor, ML certificate property, able to tighten relaxation to approach ML performance but, generic LP solvers don't efficiently exploit code sparsity

Why care about projecting onto \mathbb{PP}_d ?

Projecting onto \mathbb{PP}_d : crucial step in solving the LP using the *Alternating Direction Method of Multipliers* (ADMM)

- a classic algorithm (mid-70s), efficient, scalable, distributed, convergence guarantees, numerically robust
- decomposes global problem into local subproblems, recombine iteratively (simple scheduling) to find global solution
- simple form today as objective and constraints all linear
- cf. Boyd et al. review in *FnT in Machine Learning*, 2010.

Prior work on low-complexity LP decoding:

- earliest low-complexity LP decoding results (Vontobel & Koetter '06, '08) coordinate ascent on "softened" dual
- computational complexity linear in blocklength given good choice of scheduling (Burshtein '08, '09)

Background and Problem Setup

• LP decoding formulation: a relaxation of ML

Optimization Framework

• The alternating direction method of multipliers (ADMM)

Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope

Experimental results

- Various codes & parameter settings
- Penalized decoder

Fitting LP Decoding into ADMM template

LP Decoding:

$$\begin{array}{ll} \text{minimize} & \sum_{i} \gamma_{i} x_{i} \\ \text{subject to} & P_{j} \mathbf{x} \in \mathbb{PP}_{d} \ \forall j \\ & \mathbf{x} \in [0, 1]^{n} \end{array}$$

To formulate as an ADMM associate "replicas" z_js with each edge:

Replicas allow us to decompose into small subproblems

Lagrangian formulation

$$\begin{array}{ll} \text{minimize} \quad \sum_{i} \gamma_{i} x_{i} & \text{subject to} & \mathbf{z}_{j} = P_{j} \mathbf{x} \quad \forall j \\ \mathbf{z}_{j} \in \mathbb{PP}_{d} \quad \forall j \\ \mathbf{x} \in [0, 1]^{n} \end{array}$$

Start with regular Lagrangian with multipliers $\lambda = \{\lambda_1, \lambda_2, \ldots\}$

$$\gamma^T \mathbf{x} + \sum_j \lambda_j^T (P_j \mathbf{x} - \mathbf{z}_j),$$

Lagrangian formulation

$$\begin{array}{ll} \text{minimize} \quad \sum_{i} \gamma_{i} x_{i} & \text{subject to} & \mathbf{z}_{j} = P_{j} \mathbf{x} \quad \forall j \\ \mathbf{z}_{j} \in \mathbb{PP}_{d} \quad \forall j \\ \mathbf{x} \in [0, 1]^{n} \end{array}$$

Start with regular Lagrangian with multipliers $\lambda = \{\lambda_1, \lambda_2, \ldots\}$

$$\gamma^T \mathbf{x} + \sum_j \lambda_j^T (P_j \mathbf{x} - \mathbf{z}_j),$$

ADMM works with an augmented Lagrangian:

$$L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda) := \gamma^{T} \mathbf{x} + \sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} \|P_{j} \mathbf{x} - \mathbf{z}_{j}\|_{2}^{2}$$

Effect is to smooth the dual problem, accelerating convergence

Alternating Direction Method of Multipliers

Round-robin update of ${\bf x}$ then ${\bf z}$ then λ until converge:

$$L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda) := \gamma^{T} \mathbf{x} + \sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} \|P_{j} \mathbf{x} - \mathbf{z}_{j}\|_{2}^{2}$$

ADMM Update Steps:

$$\begin{aligned} \mathbf{x}^{k+1} &:= \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} L_{\mu}(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k}) \\ \mathbf{z}^{k+1} &:= \operatorname{argmin}_{\mathbf{z} \in \mathcal{Z}} L_{\mu}(\mathbf{x}^{k+1}, \mathbf{z}, \lambda^{k}) \\ \lambda_{j}^{k+1} &:= \lambda_{j}^{k} + \mu \left(P_{j} \mathbf{x}^{k+1} - \mathbf{z}_{j}^{k+1} \right) \end{aligned}$$

where

$$\mathcal{X} = [0, 1]^n$$
$$\mathcal{Z} = \underbrace{\mathbb{PP}_d \times \ldots \times \mathbb{PP}_d}_{\text{number of checks}}$$

• Updates: msg-passing on a "Forney-style" factor graph

ADMM x-Update: turns out to be (almost) averaging

With \mathbf{z} and λ fixed the \mathbf{x} -updates are:

minimize $L_{\mu}(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k})$ subject to $\mathbf{x} \in [0, 1]^{n}$ where $L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda) := \gamma^{T} \mathbf{x} + \sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} ||P_{j} \mathbf{x} - \mathbf{z}_{j}||_{2}^{2}$

ADMM x-Update: turns out to be (almost) averaging

With \mathbf{z} and λ fixed the \mathbf{x} -updates are:

minimize $L_{\mu}(\mathbf{x}, \mathbf{z}^{k}, \lambda^{k})$ subject to $\mathbf{x} \in [0, 1]^{n}$ where $L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda) := \gamma^{T} \mathbf{x} + \sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} ||P_{j} \mathbf{x} - \mathbf{z}_{j}||_{2}^{2}$

Partial derivatives of a quadratic form (and apply box constraints)

 $\frac{\partial}{\partial x_i} L_{\mu}(\mathbf{x}, \mathbf{z}^k, \lambda^k) = \mathbf{0}$

ADMM x-Update: turns out to be (almost) averaging

With \mathbf{z} and λ fixed the \mathbf{x} -updates are:

minimize $L_{\mu}(\mathbf{x}, \mathbf{z}^k, \lambda^k)$ subject to $\mathbf{x} \in [0, 1]^n$ where

$$L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda) := \gamma^{T} \mathbf{x} + \sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} \|P_{j} \mathbf{x} - \mathbf{z}_{j}\|_{2}^{2}$$

Partial derivatives of a quadratic form (and apply box constraints)

$$\frac{\partial}{\partial x_i} L_{\mu}(\mathbf{x}, \mathbf{z}^k, \lambda^k) = \mathbf{0}$$

Get component-wise (averaging) updates:

$$x_{i} = \Pi_{[0,1]} \left(\frac{1}{|\mathcal{N}_{\nu}(i)|} \left(\sum_{j \in \mathcal{N}_{\nu}(i)} \left(\mathbf{z}_{j}^{(i)} - \frac{1}{\mu} \lambda_{j}^{(i)} \right) - \frac{1}{\mu} \gamma_{i} \right) \right)$$

 $\mathcal{N}_{v}(i)$: set of parity checks neighboring variable *i*. $\mathbf{z}_{j}^{(i)}$: component of the *j*th replica associated with x_{i} .

ADMM z-Update

Recall:

$$L_{\mu}(\mathbf{x}, \mathbf{z}, \lambda) := \gamma^{T} \mathbf{x} + \sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} \|P_{j} \mathbf{x} - \mathbf{z}_{j}\|_{2}^{2}$$

z-update: with **x** and λ fixed we want to solve

minimize
$$\sum_{j} \lambda_{j}^{T} (P_{j} \mathbf{x} - \mathbf{z}_{j}) + \frac{\mu}{2} \sum_{j} \|P_{j} \mathbf{x} - \mathbf{z}_{j}\|_{2}^{2}$$
subject to $\mathbf{z}_{j} \in \mathbb{PP}_{d} \quad \forall j$

The minimization is separable in j: for each j we need to solve

minimize
$$\lambda_j^T (P_j \mathbf{x} - \mathbf{z}_j) + \frac{\mu}{2} \|P_j \mathbf{x} - \mathbf{z}_j\|_2^2$$

subject to $\mathbf{z}_j \in \mathbb{PP}_d$

ADMM **z**_j-Update: project onto parity polytope

z_j-update:

minimize
$$\lambda_j^T (P_j \mathbf{x} - \mathbf{z}_j) + \frac{\mu}{2} \|P_j \mathbf{x} - \mathbf{z}_j\|_2^2$$

subject to $\mathbf{z}_j \in \mathbb{PP}_d$

Setting $\mathbf{v} = P_j \mathbf{x} + \lambda_j / \mu$ (completing the square) the problem is equivalent to:

The primary challenge in ADMM

The z-update requires projecting onto the parity polytope.

Agenda

Background and Problem Setup

• LP decoding formulation: a relaxation of ML

Optimization Framework

• The alternating direction method of multipliers (ADMM)

Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope

Experimental results

- Various codes & parameter settings
- Penalized decoder

Prior characterizations of parity polytope

- Jeroslow (1975)
- Yannakakis (1991) has a quadratic d² characterization
- Feldman et al. (2005) use Yannakakis
- "Standard Polytope" in Feldman uses 2^{d-1} linear constraints per parity-check, many not active as exploited in "Adaptive LP Decoding" Taghavi and Siegel (2008)

Most points in \mathbb{PP}_d have multiple representations

By definition:

- $\mathbf{y} \in \mathbb{PP}_d$ iff $\mathbf{y} = \sum_i \alpha_i \mathbf{e}_i$
- $\sum_i \alpha_i = 1$, $\alpha_i \ge 0$
- **e**_i are even-hamming-weight binary vectors of dimension d
- Most $\mathbf{y} \in \mathbb{PP}_d$ have multiple representations

Example A (d = 6):

$$\begin{pmatrix} 1\\1\\1/2\\1/2\\1/4\\1/4 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\1\\0\\0\\0\\0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1\\1\\1\\1\\0\\0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1\\1\\1\\1\\0\\0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}$$

Most points in \mathbb{PP}_d have multiple representations

By definition:

- $\mathbf{y} \in \mathbb{PP}_d$ iff $\mathbf{y} = \sum_i \alpha_i \mathbf{e}_i$
- $\sum_i \alpha_i = 1, \ \alpha_i \ge 0$
- **e**_i are even-hamming-weight binary vectors of dimension d
- Most $\mathbf{y} \in \mathbb{PP}_d$ have multiple representations

Example B (d = 6):

$$\begin{pmatrix} 1\\1\\1/2\\1/2\\1/4\\1/4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1\\1\\0\\0\\0\\0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1\\0\\0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1\\1\\0\\0\\1\\1 \end{pmatrix}$$

There always exists a "two-slice" representation

Two-Slice Lemma:

For any $\mathbf{y} \in \mathbb{PP}_d$ there exists a representation $\mathbf{y} = \sum_i \alpha_i \mathbf{e}_i$ where

•
$$\sum_i \alpha_i = 1, \ \alpha_i \ge 0$$

- \mathbf{e}_i are of only two weights: r or r + 2 for all i
- *r* is the even integer $r = \lfloor \|\mathbf{y}\|_1 \rfloor_{\text{even}}$

Example B is one such representation with d = 6 and r = 2:

$$\begin{pmatrix} 1\\1\\1/2\\1/2\\1/4\\1/4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1\\1\\0\\0\\0\\0\\0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1\\0\\0\\0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1\\1\\0\\0\\1\\1\\0 \end{pmatrix} \\ wt=4 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1\\1\\0\\0\\1\\1 \end{pmatrix} \\ wt=4$$

Visualizing properties of \mathbb{PP}_d : always between two slices

- Let PP^r_d = conv{e_i | ||e_i||₁ = r}, a "permutohedron"
 ⇒ easy to characterize using majorization
- **Two-slice restated:** Any $\mathbf{y} \in \mathbb{PP}_d$ is sandwiched between two permutohedrons \mathbb{PP}_d^r and \mathbb{PP}_d^{r+2} where $r = \lfloor \|\mathbf{y}\|_1 \rfloor_{\text{even}}$

Majorization: definition & application to \mathbb{PP}_d^r

Definition: Let **u** and **w** be *d*-vectors *sorted* in decreasing order. The vector **w** is said to majorize **u** if

$$\sum_{k=1}^{d} u_k = \sum_{k=1}^{d} w_k$$
$$\sum_{k=1}^{q} u_k \le \sum_{k=1}^{q} w_k \quad \forall \quad q, \ 1 \le q < d$$

Specialize to
$$\mathbb{PP}_d^r$$
 where $\mathbf{w} = [\underbrace{1 \ 1 \ \dots \ 1}_r \underbrace{0 \ 0 \ \dots \ 0}_{d-r}]$
$$\sum_{k=1}^d u_k = r$$
$$\sum_{k=1}^q u_k \le \min(q, r) \quad \forall \quad q, \ 1 \le q < a$$

Majorization & permutohedrons

Theorem: u is in the convex hull of all permutations of **w** (the permutohedron defined by **w**) if and only if **w** majorizes **u**.

Majorization & permutohedrons

Theorem: \mathbf{u} is in the convex hull of all permutations of \mathbf{w} (the permutohedron defined by \mathbf{w}) if and only if \mathbf{w} majorizes \mathbf{u} .

$$\mathbf{u} = \sum_{i} \beta_i \mathbf{\Sigma}_i \mathbf{w}$$

where Σ_i are permutation matrices and β_i are weightings

Majorization & permutohedrons

Theorem: \mathbf{u} is in the convex hull of all permutations of \mathbf{w} (the permutohedron defined by \mathbf{w}) if and only if \mathbf{w} majorizes \mathbf{u} .

$$\mathbf{u} = \sum_{i} \beta_i \mathbf{\Sigma}_i \mathbf{w}$$

where Σ_i are permutation matrices and β_i are weightings

Proving two-slice lemma:

- Use above to characterize each \mathbb{PP}_d^r , r even, $r \leq d$.
- Express **y** as a weighted combination of points in \mathbb{PP}_d^r , $1 \le r \le d$.
- Show you can set all weightings to zeros except those on $r = \lfloor \|\mathbf{y}\|_1 \rfloor_{\text{even}}$ and $r = \lfloor \|\mathbf{y}\|_1 \rfloor_{\text{even}} + 2$.
- Note that finding *r* is trivial.

Next: use two-slice lemma to develop projection operation

Projecting onto the parity polytope

Desired projection:

min $\|\mathbf{v} - \mathbf{y}\|_2^2$ s.t. $\mathbf{y} \in \mathbb{PP}_d$

Projecting onto the parity polytope

Desired projection:

min
$$\|\mathbf{v} - \mathbf{y}\|_2^2$$

s.t. $\mathbf{y} \in \mathbb{PP}_d$

Use two-slice lemma to reformulate as:

$$\begin{array}{l} \min \|\mathbf{v} - \alpha \mathbf{s} - (1 - \alpha) \mathbf{t}\|_2^2 \\ \text{s.t.} \ \ 0 \le \alpha \le 1, \ \mathbf{s} \in \mathbb{P}\mathbb{P}_d^r, \ \mathbf{t} \in \mathbb{P}\mathbb{P}_d^{r+2} \end{array}$$

Projecting onto the parity polytope

Desired projection:

min
$$\|\mathbf{v} - \mathbf{y}\|_2^2$$

s.t. $\mathbf{y} \in \mathbb{PP}_d$

Use two-slice lemma to reformulate as:

$$\min \|\mathbf{v} - \alpha \mathbf{s} - (1 - \alpha)\mathbf{t}\|_2^2$$

s.t. $0 \le \alpha \le 1$, $\mathbf{s} \in \mathbb{PP}_d^r$, $\mathbf{t} \in \mathbb{PP}_d^{r+2}$

We also show (where $\Pi(\cdot)$ is shorthand for projection):

$$\underbrace{\left\lfloor \|\Pi_{[0,1]^d}(\mathbf{v})\|_1 \right\rfloor_{\text{even}}}_{r} \leq \|\Pi_{\mathbb{PP}_d}(\mathbf{v})\|_1 \leq \underbrace{\left\lfloor \|\Pi_{[0,1]^d}(\mathbf{v})\|_1 \right\rfloor_{\text{even}}}_{r+2}$$

in other words, it is trivial to identify the two slices

Use majorization to simplify problem further

Assume w.l.o.g that \boldsymbol{v} is sorted and let

$$\begin{aligned} \mathbf{z} &= \Pi_{\mathbb{PP}_d}(\mathbf{v}) = \arg\min \|\mathbf{v} - \alpha \mathbf{s} - (1 - \alpha)\mathbf{t}\|_2^2 \\ \text{s.t.} \ \ \mathbf{0} &\leq \alpha \leq 1, \ \mathbf{s} \in \mathbb{PP}_d^r, \ \mathbf{t} \in \mathbb{PP}_d^{r+2} \end{aligned}$$

Constraint set can be restated as

(i)
$$0 \le \alpha \le 1$$

(ii) $\sum_{k=1}^{d} z_k = \alpha r + (1 - \alpha)(r + 2)$
(iii) $\sum_{k=1}^{q} z_k \le \alpha \min(q, r) + (1 - \alpha) \min(q, r + 2) \quad \forall q, 1 \le q < d$
(iv) $z_1 \ge z_2 \ge \ldots \ge z_d$

Combine knowledge of r with first two constraints

From (*ii*) we have

$$\sum_{k=1}^{d} z_k = \alpha r + (1 - \alpha)(r + 2)$$
 (*)

Now we apply the bound from (i) on α , $0 \le \alpha \le 1$ to get

$$r \leq \sum_{k=1}^{d} z_k \leq r+2$$

Deal with third constraint

Consider the partial sums of the sorted vectors

$$\sum_{k=1}^{q} z_k \leq \alpha \min(q, r) + (1 - \alpha) \min(q, r + 2) \quad \forall \quad q, 1 \leq q < d$$

For q ≤ r ineq. satisfied by box constraints: 0 ≤ z_k ≤ 1 ∀k
For q ≥ r + 2 inequalities also satisfied since

$$\sum_{k=1}^{q} z_k \le \sum_{k=1}^{d} z_k = \alpha r + (1 - \alpha)(r + 2)$$
 (*)

Hence only need to deal with q = r + 1, which specializes as

$$\sum_{k=1}^{r+1} z_k \le \alpha r + (1-\alpha)(r+1) = r + (1-\alpha)$$
 (**)

Third constraint (continued...)

Solve (*) for α to find

$$\alpha=1+\frac{r-\sum_{k=1}^d z_k}{2}.$$

Finally, substitute into (**) to get

$$\sum_{k=1}^{r+1} z_k \leq r + (1-\alpha)$$
$$= r - \frac{r - \sum_{k=1}^d z_k}{2}$$

Which becomes

$$\sum_{k=1}^{r+1} z_k - \sum_{k=r+2}^d z_k \le r$$

Reformulated projection as a quadratic program (QP)

$$\begin{split} \min \| \mathbf{v} - \alpha \mathbf{s} - (1 - \alpha) \mathbf{t} \|_2^2 \\ \text{s.t.} \quad 0 \leq \alpha \leq 1 \\ \mathbf{s} \in \mathbb{PP}_d^r, \\ \mathbf{t} \in \mathbb{PP}_d^{r+2} \end{split}$$

 $\min \||\mathbf{v} - \mathbf{z}||_2^2$ s.t. $1 \ge z_k \ge 0 \forall k$ $z_1 \ge z_2 \ge \dots \ge z_d$ $r+2 \ge \sum_k z_k \ge r$ $r \ge \sum_{k=1}^{r+1} z_k - \sum_{k=r+2}^d z_k$

Reformulated projection as a quadratic program (QP)

 $\begin{array}{l} \min \|\mathbf{v} - \alpha \mathbf{s} - (1 - \alpha) \mathbf{t}\|_2^2 \\ \text{s.t.} \quad 0 \leq \alpha \leq 1 \\ \mathbf{s} \in \mathbb{PP}_d^r, \\ \mathbf{t} \in \mathbb{PP}_d^{r+2} \end{array}$

- $\begin{array}{ll} \min & \|\mathbf{v} \mathbf{z}\|_2^2 \\ \text{s.t.} & 1 \ge z_k \ge 0 \ \forall \ k \\ & z_1 \ge z_2 \ge \ldots \ge z_d \\ & r+2 \ge \sum_k z_k \ge r \\ & r \ge \sum_{k=1}^{r+1} z_k \sum_{k=r+2}^d z_k \end{array}$
- for the QP the KKT conditions are necessary and sufficient
 we develop a linear-time water-filling type algorithm that determines a solution satisfying the KKT conditions

$$\mathbf{z}^* = \Pi_{[0,1]^d} \left(\mathbf{v} - \beta[\underbrace{1 \dots 1}_{r+1} \underbrace{-1 \dots -1}_{d-r-1}] \right) \quad \text{some} \quad \beta_{\text{opt}} \in [0, \beta_{\max}]$$

Agenda

Background and Problem Setup

• LP decoding formulation: a relaxation of ML

Optimization Framework

• The alternating direction method of multipliers (ADMM)

Technical Core

- Characterizing the parity polytope
- Projecting onto the parity polytope

Experimental results

- Various codes & parameter settings
- Penalized decoder

Performance results: two LDPC codes over AWGN

- (3,6)-regular LDPC
- non-saturating BP per Butler & Siegel (Allerton '11)

- length-1057, rate-0.77
- (3,13)-regular LDPC
- observable error floor

Performance results: random LDPC ensemble over BSC

- results averaged over ensemble of 100 codes
- each a randomly generated length-1002 (3,6)-regular LDPC
- all codes had girth at least 4

Random ensemble: iteration count & execution time

- iteration count
- ADMM & BP for: (i) errors, (ii) avg, (iii) correct

- execution time
- ADMM & BP for
 (i) errors, (ii) avg, (iii) correct

Understanding LP decoding failures

LP decoding fails to a "pseudocodeword", a non-integer vertex of the fundamental polytope introduced when we relaxed each of the various integer constraints \mathbb{P}_d to \mathbb{PP}_d in

 $\min \gamma^{\mathcal{T}} \mathbf{x} \ \, \mathrm{s.t.} \ \, P_{\mathbf{j}} \mathbf{x} \in \mathbb{PP}_{\mathbf{d}} \ \, \forall \ \, \mathbf{j}, \ \, \mathbf{x} \in [0,1]^n$

ℓ_2 -penalized ADMM

In order to eliminate pseudocodewords, introduce an ℓ_2 -penalty to push the solution towards an integral solution, now solve:

min $\gamma^T \mathbf{x} - \boldsymbol{c} \| \mathbf{x} - \mathbf{0.5} \|_2$ s.t. $P_j \mathbf{x} \in \mathbb{PP}_d \quad \forall j, \ \mathbf{x} \in [0, 1]^n$

ℓ_2 -penalized ADMM

In order to eliminate pseudocodewords, introduce an ℓ_2 -penalty to push the solution towards an integral solution, now solve:

min
$$\gamma^{\mathsf{T}} \mathbf{x} - \boldsymbol{c} \| \mathbf{x} - \mathbf{0.5} \|_2$$
 s.t. $P_j \mathbf{x} \in \mathbb{PP}_d \ \forall j, \ \mathbf{x} \in [0, 1]^n$

Recap & wrap-up

Recap:

- LP decoding via ADMM
- main hurdle: efficient projection onto the parity polytope, complexity of sort
- simple scheduling and complexity linear in the block-length
- roughly same execution time as BP
- further improvements via ℓ_2 -penalty (alternately ℓ_1 -penalty)
- Try it yourself! Documented code available at https://sites.google.com/site/xishuoliu/codes

Things to do:

- error floor analysis (LP & penalized)
- effects of finite precision
- how to implement in hardware
- understand BP/LP low-SNR gap (without penalty)
- other codes: non-binary codes, permutation-based codes

2014 IEEE North American School on Information Theory

To be held at the Fields Institute at the University of Toronto 18-21 June 2014

