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Life in a networked world

Communication and computing devices are everywhere

Sensors are everywhere

And getting smarter

Berkeley motes: “Smart Dust”
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Environment monitoring like never before

Traffic density, New York
Surface temperature, EPFL,

[Nadeau et al., ’09]
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Environment monitoring like never before

Traffic density, New York
Surface temperature, EPFL,

[Nadeau et al., ’09]

Emerging paradigm:
Sensing spatial fields with mobile sensors
Offers unique advantages over static sensing
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Advantages of mobile sensing

Mobile sensor can sample at arbitrarily high resolutions
along path
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Advantages of mobile sensing

Mobile sensor can sample at arbitrarily high resolutions
along path

Mobile sensors can implement spatial anti-aliasing via
time-domain filtering (See later)

Single mobile sensor can cover a wide area of interest

Potentially cost-effective and more practical - e.g. pollution
monitoring in a city
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Pollution monitoring in Lausanne
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Mobile radiation sampling in Japan
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Mobile radiation sampling in Japan

Mobile sensing on roads
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Citizen sensing

Images from http://www.urban-atmospheres.net/CitizenScience/
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Outline of the talk

1 Sampling Trajectories for Mobile Sampling

Classical sampling vs mobile sampling

Sampling trajectories

Optimal parallel trajectories

2 Spatial Anti-aliasing via Mobile Sensing

3 Privacy of Mobility traces

4 Recap
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Classical sampling in higher dimensions

Given: spatially bandlimited field f : Rd 7→ R

F(ω) :=

∫
f (r)e−j〈ω,r〉dr = 0 for ω /∈ Ω
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Classical sampling in higher dimensions [PM 1962]

Sampling on a lattice

X

Y

Sampling lattice
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Classical sampling in higher dimensions [PM 1962]

Sampling on a lattice

X

Y

Sampling lattice

2π
X

2π
Y

No aliasing in sampled spectrum

for X = Y ≤ π

R
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Classical sampling in higher dimensions [PM 1962]

Sampling on a lattice
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Sampling lattice
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Classical sampling in higher dimensions [PM 1962]

Sampling on a lattice

2π
X

2π
Y

Aliased sampled spectrum
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Perfect recovery impossible

Lattice should be fine enough ≡ Nyquist criterion in R
d
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Classical sampling vs Mobile sampling

Classical sampling
Static sensors record field

values at points
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Classical sampling vs Mobile sampling

Classical sampling
Static sensors record field

values at points (e.g. a lattice)

Mobile sampling
Mobile sensors record field

values on trajectories

Focus on time-invariant fields
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Sampling trajectories

A trajectory set p is a countable collection of paths pi :

p = {pi : i ∈ I}
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A trajectory set p is a countable collection of paths pi :

p = {pi : i ∈ I}

Path density of p: Total path-length per unit spatial volume

ℓ(p) := lim
a→∞

Dp(a)

Vold(a)
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Sampling trajectories for bandlimited fields

NΩ: collection of Nyquist trajectory sets p for fields f
bandlimited to Ω
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Sampling trajectories for bandlimited fields

NΩ: collection of Nyquist trajectory sets p for fields f
bandlimited to Ω

Requirements:

Field f (.) can be reconstructed stably from values on
trajectories

There exists Λ ⊂ {pi(t) : t ∈ R, i ∈ I} and A,B < ∞ s.t.,

A‖f‖2 ≤
∑

x∈Λ

|f (x)|2 ≤ B‖f‖2
, for all f ∈ BΩ
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Sampling trajectories for bandlimited fields

NΩ: collection of Nyquist trajectory sets p for fields f
bandlimited to Ω

Requirements:

Field f (.) can be reconstructed stably from values on
trajectories

There exists Λ ⊂ {pi(t) : t ∈ R, i ∈ I} and A,B < ∞ s.t.,

A‖f‖2 ≤
∑

x∈Λ

|f (x)|2 ≤ B‖f‖2
, for all f ∈ BΩ

Regularity conditions
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Main contributions

Examples of trajectory sets in NΩ

Some new results
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Main contributions

Examples of trajectory sets in NΩ

Some new results

Designing trajectory-sets that are minimal in path density

New formulation
Optimality results from restricted classes
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Related work

Scanning trajectories for MRI

Trajectories in Fourier space indicate how to vary magnetic
field in time
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Related work

Scanning trajectories for MRI

Trajectories in Fourier space indicate how to vary magnetic
field in time

Reconstructing bandlimited fields from readings on circles
[Tewfik, Levy, Willsky ’88], [Myridis, Chamzas ’98] and spirals [Benedetto,

Wu ’00]

Adaptive path-planning in mobile sensor networks etc.

Jayakrishnan Unnikrishnan (EPFL) Mobile Sensing Michigan 9/10/2013 15 / 60



A Uniform trajectory set in R
2

D
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Proof - Uniform set

D

ǫ
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Proof - Uniform set

D

ǫ

Ω

Original field spectrum
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Proof - Uniform set

D

ǫ

2π
ǫ

2π
D

Sampled field spectrum
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Proof - Uniform set

D

ǫ

2π
D

Sampled field spectrum as ǫ → 0
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Proof - Uniform set

D

ǫ

Ω
Ω+

y

Ω−
y

Perfect recovery provided D ≤ 2π

Ω+
y −Ω−

y

i.e. p ∈ NΩ
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Union of Uniform sets in R
2

D1

D2

v1

v2
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Union of Uniform sets in R
2

D1

D2

v1

v2

Can identify exact conditions on Di , vi to ensure p ∈ NΩ
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Proof intuition - union of uniform sets

2π
D1

Ω

Aliased spectrum from first uniform set
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Proof intuition - union of uniform sets

2π
D1

ω1

ω2

Aliased reconstruction: F̂(ω1) = F(ω1) + F(ω2)
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Proof intuition - union of uniform sets

Linear equations solvable under condition
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Union of regular parallel trajectories for R2

D1

D2

v1

v2

u1

u2

For each i define

ui =
2πv⊥

i

Di
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Union of regular parallel trajectories for R2

u1

u2

u1+u2
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Union of regular parallel trajectories for R2

Q
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Union of regular parallel trajectories for R2

Ω

Q

Theorem

For convex, compact Ω we have p ∈ NΩ if and only if Q is not
contained within Ω or its translates

Jayakrishnan Unnikrishnan (EPFL) Mobile Sensing Michigan 9/10/2013 21 / 60



Example 1: Orthogonal trajectories and Isotropic field
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Sampled spectra from the two sets
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Example 1: Orthogonal trajectories and Isotropic field

∆

∆

x

y

Orthogonal sets of trajectories

2π
∆∗

2π
∆∗

ωx

ωy

Critical sampling
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Example 2: Non-isotropic field

∆

2∆
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y

Orthogonal sets of trajectories
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Example 2: Non-isotropic field
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Example 2: Non-isotropic field
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Optimality of a Uniform set in R
2

Assume Ω is a convex set

Ω
W
(Ω
)

2π

W
(Ω
)

x

y

ωx

ωy
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Optimality of a Uniform set in R
2

Assume Ω is a convex set

Ω
W
(Ω
)

2π

W
(Ω
)

x

y

ωx

ωy

Optimal Uniform set p is ⊥ direction in which Ω is narrowest
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Optimality of a Uniform set in R
2

Assume Ω is a convex set

Ω
W
(Ω
)

2π

W
(Ω
)

x

y

ωx

ωy

Optimal Uniform set p is ⊥ direction in which Ω is narrowest

Theorem

For any union of uniform sets q ∈ NΩ, we have

ℓ(q) ≥ ℓ(p)
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Implications for isotropic fields

√
2π
R

√
2π
R

π

R

x

y

Optimal uniform set has lower path density than any union of
orthogonal uniform sets
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Other trajectory configurations

Equispaced concentric circles

Jayakrishnan Unnikrishnan (EPFL) Mobile Sensing Michigan 9/10/2013 26 / 60



Other trajectory configurations

Interleaved spirals
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Uniform sets for R3

Assume Ω ⊂ R
3 is convex and symmetric
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Uniform sets for R3

Assume Ω ⊂ R
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Consider Uniform sets in R
3

p

u
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Uniform sets for R3

Assume Ω ⊂ R
3 is convex and symmetric

Consider Uniform sets in R
3

p

u
Lat(p)

Theorem

p ∈ NΩ iff Lat(p) forms sampling lattice for Ω ∩ u⊥. Furthermore

ℓ(p) = Sampling density(Lat(p))
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Section of a set

Ω

Ω ∩ u⊥

u
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Non-uniform parallel trajectory sets for Rd

Consider non-uniform parallel trajectory sets
p

u
Λ(p)

If p is homogenous (i.e., Λ(p) has equal density about every
point), then

ℓ(p) = Sampling density(Λ(p))
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Optimal parallel trajectory sets for Rd

Theorem

For Ω compact, convex, and symmetric let

u∗ = arg min
u∈Rd :‖u‖=1

|Ω ∩ u⊥|

Then the optimal parallel trajectory set p∗ is parallel to u∗ and

ℓ(p∗) =
|Ω ∩ u∗⊥|

(2π)d−1
.
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Optimal parallel trajectory sets for Rd

Theorem

For Ω compact, convex, and symmetric let

u∗ = arg min
u∈Rd :‖u‖=1

|Ω ∩ u⊥|

Then the optimal parallel trajectory set p∗ is parallel to u∗ and

ℓ(p∗) =
|Ω ∩ u∗⊥|

(2π)d−1
.

I.e., minimum path density ∝ minimum section through the
origin
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Optimal parallel trajectory sets for Rd

Ω

Ω ∩ u⊥

u
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Classical sampling vs Mobile sampling

Classical sampling

Ω

Minimum sampling density

∝ Vol(Ω) [Landau ’67s]

Sampling on parallel lines

Ω

Ω ∩ u⊥

u

Minimum path density

∝ Min. section(Ω)
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Extensions

Generalize trajectories further to manifolds
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Extensions

Generalize trajectories further to manifolds

Sampling on arbitrary curves: Ill-posed but can be fixed

Time-varying bandlimited fields e.g. spatial audio fields

Reduce sensor density by increasing temporal sampling rate
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Outline of the talk

1 Sampling Trajectories for Mobile Sampling

Classical sampling vs mobile sampling

Sampling trajectories

Optimal parallel trajectories

2 Spatial Anti-aliasing via Mobile Sensing

3 Privacy of Mobility traces

4 Recap
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Anti-aliasing in one dimension

replacements

W−W

X (ω)

Bandlimited signal spectrum
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Anti-aliasing in one dimension

2π
∆

Xs(ω)

Sampled spectrum
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Anti-aliasing in one dimension

X (ω)

Imperfectly bandlimited signal
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Anti-aliasing in one dimension

2π
∆

Xs(ω)

Sampled spectrum
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Anti-aliasing in one dimension

X̂ (ω)

Aliasing in reconstructed spectrum
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Anti-aliasing in one dimension

X (ω)
Haa(ω)

x(t) haa(.)
nT

x [n] hr(.) x̂(t)

Anti-aliasing filtering
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Anti-aliasing in one dimension

X̂ (ω)

x(t) haa(.)
nT

x [n] hr(.) x̂(t)

No aliasing in reconstruction
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Spatial anti-aliasing

Impossible with static sensors

Cannot integrate over continuous space
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If constant velocity then s(t) is bandlimited
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Spatial anti-aliasing

Impossible with static sensors

Cannot integrate over continuous space

Mobile sensor sees field as function of time

s(t) = f (r(t))

If constant velocity then s(t) is bandlimited

In presence of noise time-domain filtering can suppress
spatial aliasing along direction of motion
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Spatial anti-aliasing filter

x

y
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Spatial anti-aliasing filter
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Spatial anti-aliasing filter
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Spatial anti-aliasing filter
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Spatial anti-aliasing filter
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Spatial anti-aliasing illustrated

Static sampling

Original spectrum Sampled spectrum
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Spatial anti-aliasing illustrated

Static sampling

Original spectrum with
noise

Sampled spectrum aliased
in all directions
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Spatial anti-aliasing illustrated

Static sampling

Original spectrum with
noise

Reconstructed spectrum
aliased in all directions
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Spatial anti-aliasing illustrated

Mobile sampling

Spatially filtered field with
noise

Sampled spectrum aliased
only in two directions
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Spatial anti-aliasing illustrated

Mobile sampling

Spatially filtered field with
noise

Reconstructed spectrum
aliased in two directions
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An example: Campus temperature

meters
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Performance comparison

Table : Reconstruction errors

Data type Static

sensing

Mobile

sensing

Temperature 0.53% 0.45%

BL in noise 9.9% 1.5%
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Performance comparison

Table : Reconstruction errors

Data type Static

sensing

Mobile

sensing

Temperature 0.53% 0.45%

BL in noise 9.9% 1.5%

Improvement in SNR can be quantified analytically

Conclusion: Mobile sensing enables spatial anti-aliasing filtering
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Outline of the talk

1 Sampling Trajectories for Mobile Sampling

Classical sampling vs mobile sampling

Sampling trajectories

Optimal parallel trajectories

2 Spatial Anti-aliasing via Mobile Sensing

3 Privacy of Mobility traces

4 Recap
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Privacy concerns

Personal data being collected at unprecedented levels
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Unique in the crowd

Anonymized user data is not anonymous given auxiliary
information, e.g., Netflix prize dataset [Narayanan, Shmatikov 2008]
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Unique in the crowd

Anonymized user data is not anonymous given auxiliary
information, e.g., Netflix prize dataset [Narayanan, Shmatikov 2008]

Users are uniquely identifiable from small set of
observations

87% Americans uniquely identified given ZIP code, birthdate, and
sex [Sweeney 2000]

95% of mobile users in a country are uniquely identified from four
spatio-temporal points [Montjoye et al 2013]
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De-anonymization

8:00 AM

8:05 AM

8:20 AM

User 1
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De-anonymization

8:00 AM

8:05 AM

8:20 AM

9:00 AM

9:20 AM

User ? spotted

    @ 9:10 AM

9:05 AM

User 1
User 2
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De-anonymization

8:00 AM

8:05 AM

8:20 AM

9:00 AM

9:20 AM

User 2 spotted

    @ 9:10 AM

9:05 AM

User 1
User 2

Uniqueness of trajectories ⇒ Easily de-anonymized
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Privacy of Statistics

Sometimes statistics of data are sufficient, e.g.,
Fraction of time spent in particular locations or websites (useful for

ad-placements, infrastructure planning)

# visits to particular restaurants (for popularity surveys)

# tweets/blog comments on a particular topic/ containing a

particular word (for targeted ads)
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Privacy of Statistics

Sometimes statistics of data are sufficient, e.g.,
Fraction of time spent in particular locations or websites (useful for

ad-placements, infrastructure planning)

# visits to particular restaurants (for popularity surveys)

# tweets/blog comments on a particular topic/ containing a

particular word (for targeted ads)

Question: How private are anonymized statistics?
What is the optimal de-anonymization strategy given independent

auxiliary information?

Focus on histograms

How unique are user location statistics?
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Example: Location Histograms

User 1
User 2
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De-anonymizing as Matching

Given: Anonymized Statistics of K users

User ?
User ?

Anonymized 

Statistics of Day 1
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De-anonymizing as Matching

Given: Anonymized Statistics of K users’ data and Auxiliary
Information about independently generated data

User ?
User ?

Anonymized 

Statistics of Day 1
8:00 AM

8:05 AM

8:20 AM

9:00 AM

9:20 AM

9:05 AM

User 1
User 2

Trajectories of

Day 2
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De-anonymizing as Matching

Given: Anonymized Statistics of K users’ data and Auxiliary
Information about independently generated data

User ?
User ?

Anonymized 

Statistics of Day 1
8:00 AM

8:05 AM

8:20 AM

9:00 AM

9:20 AM

9:05 AM

User 1
User 2

Trajectories of

Day 2

Task: Match Auxiliary Information to the correct Anonymized
Statistics
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Data model and notation

Let xπ(i) and yi denote length-n data vectors of user i
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Data model and notation

Let xπ(i) and yi denote length-n data vectors of user i

where π : {1, 2, . . . ,K} 7→ {1, 2, . . . ,K} is an unknown permutation

User’s data: i.i.d. according to unknown law from finite
alphabet Z

Let pxi
be empirical distribution of vector xi :

pxi
(z) =

1

n

n∑
j=1

I{xi
j = z}, z ∈ Z

where
xi = (xi

1, xi
2, . . . , xi

n)
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Problem statement

Statistics revealed: (Anonymized) Empirical distribution of
users’ x data streams, i.e., the set

{px1
, px2

, . . . , pxK
}

is revealed, but not the user identities, i.e., π is unknown

Jayakrishnan Unnikrishnan (EPFL) Mobile Sensing Michigan 9/10/2013 49 / 60



Problem statement

Statistics revealed: (Anonymized) Empirical distribution of
users’ x data streams, i.e., the set

{px1
, px2

, . . . , pxK
}

is revealed, but not the user identities, i.e., π is unknown

Auxiliary information: y data streams of the users, as well as
the identities

Note: yi ’s are independent of xi ’s
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Matching Problem

Anonymized Statistics Auxiliary Information

pn
x1

pn
x2

pn
xK−1

pn
xK

y1

y2

yK−1

yK

All strings {xi} and {yi} have equal lengths
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Matching Problem

Anonymized Statistics Auxiliary Information

pn
x1

pn
x2

pn
xK−1

pn
xK

y1

y2

yK−1

yK

All strings {xi} and {yi} have equal lengths

Can be viewed as hypothesis testing problem with M = K !
composite hypotheses
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Matching Problem

Anonymized Statistics

Auxiliary Information

pn
x1

pn
x2

pn
xK−1

pn
xK

y1

Related problem: only one y string given; studied by
Gutman (’89)
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Potential solution: “ML”

Anonymized Statistics Auxiliary Information

pn
x1

pn
x2

pn
xi

pn
xK−1

pn
xK

y1

y2

yj

yK−1

yK

wij

wij=D(pn
xi
‖ 1

2
(pn

xi
+pn

yj
))+D(pn

yj
‖ 1

2
(pn

xi
+pn

yj
))
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yK

wij

wij=D(pn
xi
‖ 1

2
(pn

xi
+pn

yj
))+D(pn

yj
‖ 1

2
(pn

xi
+pn

yj
))

ML permutation ⇔ Min-Weight Matching
⇒ easy to compute
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Potential solution: “ML”

Anonymized Statistics Auxiliary Information

pn
x1

pn
x2

pn
xi

pn
xK−1

pn
xK

y1

y2

yj

yK−1

yK

wij

wij=D(pn
xi
‖ 1

2
(pn

xi
+pn

yj
))+D(pn

yj
‖ 1

2
(pn

xi
+pn

yj
))

ML permutation ⇔ Min-Weight Matching
⇒ easy to compute

Is this optimal?
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Potential solution: “ML”

Anonymized Statistics Auxiliary Information

pn
x1

pn
x2

pn
xi

pn
xK−1

pn
xK

y1

y2

yj

yK−1

yK

wij

wij=D(pn
xi
‖ 1

2
(pn

xi
+pn

yj
))+D(pn

yj
‖ 1

2
(pn

xi
+pn

yj
))

ML permutation ⇔ Min-Weight Matching
⇒ easy to compute

A slight variant of ML is optimal!
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Generalizations

Different sets of distinct users observed in two days
Can be handled provided # common users known

Anonymized Statistics

Auxiliary Information

pn
x1

pn
x2

pn
x3

pn
x4

pn
x5

pn
x6

y1

y2

y3

y4

y5
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Experiment: Mobility traces on EPFL campus

Obtained from Wi-Fi connections
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Dataset

Anonymized mobility traces of K ≈ 1000 users on EPFL
campus measured on Mondays for two weeks

xi in first week and yi in second week
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Dataset

Anonymized mobility traces of K ≈ 1000 users on EPFL
campus measured on Mondays for two weeks

xi in first week and yi in second week

Alphabet size |Z| = 933 access points

Data-length n = 28800 seconds (8 hours)
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Results

Dataset # users (K ) Matching K users

in second week

(fraction of correct
matches)

Mondays 1154 52.9%
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Results

Dataset # users (K ) Matching K users

in second week

(fraction of correct
matches)

Matching 1

random user in

second week
(prob of success)

Mondays 1154 52.9% 44.5%

Info on more users on second day ⇒ Higher accuracy
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Results

Dataset # users (K ) Matching K users

in second week

(fraction of correct
matches)

Matching 1

random user in

second week
(prob of success)

Mondays 1154 52.9% 44.5%

Mondays
and

Tuesdays

1047 70.5% 53.5%

Info on more users on second day ⇒ Higher accuracy

More days ⇒ Higher accuracy

Conclusion: Simple anonymization is not effective
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Outline of the talk

1 Sampling Trajectories for Mobile Sampling

Classical sampling vs mobile sampling

Sampling trajectories

Optimal parallel trajectories

2 Spatial Anti-aliasing via Mobile Sensing

3 Privacy of Mobility traces

4 Recap
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Recap

Design of sampling trajectories for bandlimited fields

Notions of path density and optimal trajectories
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Recap

Design of sampling trajectories for bandlimited fields

Notions of path density and optimal trajectories

Perfect reconstruction conditions; Shortest trajectories

Uniform set better than unions of Uniform sets for R2

Optimal design of parallel trajectory sets for Rd

Spatial anti-aliasing via time-domain filtering

Mobility statistics: Simple anonymization is ineffective

Optimal de-anonymization strategy can be identified
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A new sampling theory

∆
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A new sampling theory

∆
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Thank You!

Questions?
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