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Threats to Internet security and availability

From unintentional to intentional, random maliciousness to economic
driven:

• misconfiguration

• mismanagement

• botnets, worms, SPAM, DoS attacks, . . .

Typical operators’ countermeasures: filtering/blocking

• within specific network services (e.g., e-mail)

• with the domain name system (DNS)

• based on source and destination (e.g., firewalls)

• within the control plane (e.g., through routing policies)
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Host Reputation Block Lists (RBLs)

Commonly used RBLs:

• daily average volume (unique entries) ranging from 146M (BRBL)
to 2K (PhishTank)

RBL Type RBL Name
Spam BRBL, CBL, SpamCop,

WPBL, UCEPROTECT

Phishing/Malware SURBL, PhishTank, hpHosts

Active attack Darknet scanners list, Dshield
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Potential impact of RBLs
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NetFlow records of all traffic flows at Merit Network

• at all peering edges of the network from 6/20/2012-6/26/2012

• sampling ratio 1:1

• 118.4TB traffic: 5.7B flows, 175B packets.

As much as 17% (30%) of overall traffic (flows) “tainted”

Liu (Michigan) Network Reputation April 25, 2013 5 / 53



Intro Motivation Crowd sourcing Environments Discussion Security investment Conclusion

How reputation lists should be/are used

Strengthen defense:

• filter configuration, blocking mechanisms, etc.

Strengthen security posture:

• get hosts off the list

• install security patches, update software, etc.

Retaliation for being listed:

• lost revenue for spammers

• example: recent DDoS attacks against Spamhaus by Cyberbunker

Aggressive outbound filtering:

• fixing the symptom rather than the cause

• example: the country of Mexico
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Limitations of host reputation lists

Host identities can be highly transient:

• dynamic IP address assignment

• policies inevitably reactive, leading to significant false positives
and misses

• potential scalability issues

RBLs are application specific:

• a host listed for spamming can initiate a different attack

Lack of standard and transparency in how they are generated

• not publicly available: subscription based, query enabled
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An alternative: network reputation

Define the notion of “reputation” for a network (suitably defined)
rather than for hosts

A network is typically governed by consistent policies

• changes in system administration on a much larger time scale

• changes in resource and expertise on a larger time scale

Policies based on network reputation is proactive

• reputation reflects the security posture of the entire network,
across all applications, slow changing over time

Enables risk-analytical approaches to security; tradeoff between
benefits in and risks from communication
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An illustration
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Figure: Temporal and Spatial aggregation of reputation

• Taking the union of 9 RBLs

• Left: % of days an Addr is listed (est. total of 100M)

• Right: % Addrs blacklisted within an autonomous system (est.
total of 35-40K)
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Many challenges to address

• What is the appropriate level of aggregation

• How to obtain such aggregated reputation measure, over time,
space, and applications

• How to use these to design reputation-aware policies

• How to make the reputation measure accurate representation of
the quality of a network

• What effect does it have on the network’s behavior toward others
and itself
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Outline of the talk

Incentivizing input – crowd-sourcing reputation

• Assume a certain level of aggregation

• Each network possesses information about itself and others

• Can we incentivize networks to participate in a collective effort to
achieve accurate estimates/reputation assessment, while
observing privacy and self interest

Impact of reputation on network behavior

• Benefits from and cost in investing in security

• Positive externality and free rider

• Can the desire for good reputation (or the worry over bad
reputation) positively alter a network’s decision in investment
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Crowd-sourcing reputation

• Basic setting
• A distributed multi-agent system.
• Each agent has perceptions or beliefs about other agents.
• The truth about each agent known only to itself.
• Each agent wishes to obtain the truth about others.

• Goal: construct mechanisms that incentivize agents to participate
in a collective effort to arrive at correct perceptions.

• Key design challenges:
• Participation is voluntary.
• Individuals may not report truthfully even if they participate.
• Individuals may collude.
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Other applicable contexts and related work

Online review/recommendation systems:

• Example: Amazon, EBay

• Users (e.g., sellers and buyers) rate each other

Reputation in P2P systems

• Sustaining cooperative behavior among self-interested individuals.

• User participation is a given; usually perfect observation.

Elicitation and prediction mechanisms

• Used to quantify the performance of forecasters; rely on
observable objective ground truth.

• Users do not attach value to realization of event or the outcome
built by elicitor.
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The Model

• K inter-connected networks, N1,N2, · · · ,NK .

• Network Ni ’s overall quality or health condition described by a
rii ∈ [0, 1]: true or real quality of Ni .

• A central reputation system collects input from each Ni and
computes a reputation index r̂i , the estimated quality.
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Main Assumptions

• Ni knows rii precisely, but this is its private information.

• Ni can sufficiently monitor inbound traffic from Nj to form an
estimate Rij of rjj .

• Ni ’s observation is in general incomplete and may contain
noise/errors: Rij ∼ N (µij , σ

2
ij).

• This distribution is known to network Nj , while Ni itself may or
may not be aware of it.

• The reputation system may have independent observations R0i for
∀i .

• The reputation mechanism is common knowledge.
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Designing the mechanism

• Goal: solution to the centralized problem in an informationally
decentralized system.

• Choice parameters of the mechanism are:
• Message space M: inputs requested from agents.
• Outcome function h(·): a rule according to which the input

messages are mapped to outcomes.

• Other desirable features: budget balance, and individual
rationality.
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The centralized problem
Systems’ Objective

Minimize estimation error for all networks.

Two possible ways of defining a reputation index:

• Absolute index r̂Ai : an estimate of rii .

• Relative index r̂Ri : given true qualities rii , r̂Ri = rii∑
k rkk

.

min
∑
i

|r̂Ai − rii | or min
∑
i

|r̂Ri −
rii∑
k rkk
|

If the system had full information about all parameters:

r̂Ai = rii and r̂Ri =
rii∑
k rkk
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In a decentralized system
Ni ’s Objective

The truth element: security
Accurate estimate r̂j on networks Nj other than itself.

Ii = −
∑
j 6=i

fi (|r̂Aj − rjj |) or Ii = −
∑
j 6=i

fi (|r̂Rj −
rjj∑
k rkk
|) .

fi ()’s are increasing and convex.

The image element: reachability
High reputation r̂i for itself.

IIi = gi (r̂Ai ) or IIi = gi (r̂Ri ).

gi ()’s are increasing and concave.
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Different types of networks

• Truth type: dominated by security concerns, e.g., DoD networks,
a buyer on Amazon.

• Image type: dominated by reachability/traffic attraction concerns:
a blog hosting site, a phishing site, a seller on Amazon.

• Mixed type: legitimate, non-malicious network; preference in
general increasing in the accuracy of others’ and its own quality
estimates.

ui = −λ
∑
j 6=i

fi (|r̂Aj − rjj |) + (1− λ)gi (r̂Ai )

• A homogeneous vs. a heterogeneous environment
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Reputation mechanisms

Design a simple mechanism for each type of environment and
investigate its incentive feature.

• Possible forms of input:
• cross-reports Xij , j 6= i : Ni ’s assessment of Nj ’s quality
• self-reports Xii : networks’ self-advertised quality measure

• The qualitative features (increasing in truth and increasing in
image) of the preference are public knowledge; the functions fi (),
gi () are private information.

• Ni is an expected utility maximizer due to incomplete information.

• Assume external observations are unbiased.

• If taxation is needed, aggregate utility of Ni defined as
vi := ui − ti .
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Setting I: Truth types, absolute reputation

(Model I) ui = −
∑
j 6=i

fi (|r̂Aj − rjj |)

The absolute scoring (AS) mechanism:

• Message space M: each user reports xii ∈ [0, 1].

• Outcome function h(·):
• The reputation system chooses r̂Ai = xii .
• Ni is charged a tax term ti given by:

ti = |xii − R0i |2 −
1

K − 1

∑
j 6=i

|xjj − R0j |2 .

Liu (Michigan) Network Reputation April 25, 2013 21 / 53



Intro Motivation Crowd sourcing Environments Discussion Security investment Conclusion

Properties of the AS mechanism

Rationale: assign reputation indices assuming truthful reports, ensure
truthful reports by choosing the appropriate ti .

• Truth-telling is a dominant strategy in the induced game
⇒ Achieves centralized solution.

•
∑

i ti = 0
⇒ Budget balanced.

• The mechanism is individually rational
⇒ Voluntary participation.
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Truth revelation under AS

Truth-telling is a dominant strategy in the game induced by the AS
mechanism

E [vi (xii , {Xjj}j 6=i )] = −
∑
j 6=i

E [fi (|r̂Aj − rjj |)]

−E [|xii − R01|2] +
1

K − 1

∑
j 6=i

E [|Xjj − R0j |2]

• xii can only adjust the 2nd term, thus chosen to minimize the 2nd
term.

• By assumption, Ni knows R0i ∼ N (rii , σ
2
0i ), thus optimal choice

xii = rii .
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Individual rationality under AS

The AS mechanism is individually rational.

• Staying out: reserved utility given by −
∑

j 6=i E (fi (|Rij − rjj |)).

• Participating: expected utility −
∑

j 6=i fi (0) at equilibrium.

• fi (·) is increasing and convex, thus

E [fi (|Rij − rjj |)] ≥ fi (E (|Rij − rjj |)) = fi (
√

2
πσij) > fi (0), ∀j 6= i .

• The AS mechanism is individually rational.
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Extended-AS Mechanism

• What if the system does not possess independent observations?

• Use a random ring to gather cross-observations and assess taxes.

• Ni is asked to report Xii , as well as Xi(i+1) and Xi(i+2).
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Extended-AS Mechanism

• Ni is charged two taxes:
• on the inaccuracy of its self-report wrt what Ni−1 says about Ni

• on the inaccuracy of its cross-report on Ni+1 wrt what Ni−1 says

ti = |xii − X(i−1)i |2 −
1

K − 2

∑
j 6=i,i+1

|Xjj − X(j−1)j |2

+|xi(i+1) − X(i−1)(i+1)|2 −
1

K − 2

∑
j 6=i,i+1

|Xj(j+1) − X(j−1)(j+1)|2

• Truthful self-reports achieved by the 1st taxation term.

• Truthful cross-reports achieved by the 2nd taxation term.

• Other associations also possible: e.g., random sets.

Extended-AS results in the centralized solution

Liu (Michigan) Network Reputation April 25, 2013 26 / 53



Intro Motivation Crowd sourcing Environments Discussion Security investment Conclusion

Setting II: Truth types, relative reputation

(Model II) ui = −
∑
j 6=i

fi (|r̂Rj −
rjj∑
k rkk
|)

The fair ranking (FR) mechanism:

• Message space M: each user reports xii ∈ [0, 1].

• Outcome function h(·):
• the system assigns r̂Ri = xii∑

k xkk
.

• No taxation is used.
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Properties of the FR mechanism

• Truth-telling is a Bayesian Nash equilibrium in the induced game

ui (xii , {rkk}k 6=i ) = −
∑
j 6=i

fi (|
rjj(xii − rii )

(xii +
∑

k 6=i rkk)(
∑

k rkk)
|)

⇒ Achieves centralized solution xii = rii .

• The mechanism is individually rational
⇒ Voluntary participation.

• Achievable without cross-observations from other networks, direct
observations by the system, or taxation.
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Setting III: Mixed types, relative reputation

(Model III) ui = −
∑
j 6=i

fi (|r̂Rj −
rjj∑
k rkk
|) + gi (r̂Ri )

• The individual’s objective is no longer aligned with the system
objective

• Direct mechanism possible depending on the specific forms of fi ()
and gi ().
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Setting IV: Mixed types, absolute reputation

(Model IV) ui = −
∑
j 6=i

fi (|r̂Aj − rjj |) + gi (r̂Ai )

An Impossibility result:

• centralized solution cannot be implemented in BNE.

Consider suboptimal solution:

• use both self- and cross-reports

• forgo the use of taxation
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A simple averaging mechanism

(Model IV) ui = −
∑
j 6=i

fi (|r̂Aj − rjj |) + gi (r̂Ai )

• Solicit only cross-reports.

• Take r̂Ai to be the average of all xji , j 6= i , and R0i .

• Used in many existing online system: Amazon and Epinions.

• Truthful revelation of Rji is a BNE.
• Nj has no influence on its own estimate r̂Aj .
• Nj ’s effective objective is to minimize the first term.
• The simple averaging mechanism results in r̂Ai ∼ N (rii , σ

2/K).

• r̂Ai can be made arbitrarily close to rii as K increases.

• (Under this mechanism, if asked, Ni will always report xii = 1)
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Can we do better?

Instead of ignoring Ni ’s self-report, incentivize Ni to provide useful
information.

• Convince Ni that it can contribute to a higher estimated r̂Ai by
supplying input Xii ,

• Use cross-reports to assess Ni ’s self-report, and threaten with
punishment if it is judged to be overly misleading.
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Truthful cross-reports

A mechanism in which Ni ’s cross-reports are not used in calculating its
own reputation estimate. Then:

• Ni can only increase its utility by altering r̂Aj when submitting Xij ,

• Ni doesn’t know rjj , can’t use a specific utility function to
strategically choose Xij ,

• Ni ’s best estimate of rjj is Rij ,

⇒ Truthful cross-reports!

Questions:

• Can Ni make itself look better by degrading Nj?

• Is it in Ni ’s interest to degrade Nj?
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A punish-reward (PR) mechanism

Denote the output of the simple averaging mechanism by X̄0i .

r̂Ai (Xii , X̄0i ) =

{
X̄0i+Xii

2 if Xii ∈ [X̄0i − ε, X̄0i + ε]
X̄0i − |Xii − X̄0i | if Xii /∈ [X̄0i − ε, X̄0i + ε]

• ε is a fixed and known constant.

• Take the average of Xii and X̄0i if the two are sufficiently close;

else punish Ni for reporting significantly differently.

⇒ Each network only gets to optimize its self-report, knowing all
cross-reports are truthful.
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Choice of self-report

Self-report xii determined by maxxii E [r̂Ai (xii , X̄0i )], where

X̄0i ∼ N (rii ,
σ2

K ) assuming common and known σ. Optimal xii , when

ε = aσ′ = aσ
2

K , is given by:

x∗ii = rii + aσ′y

0 < y < 1 ⇒
self-report is positively
biased and within expected
acceptable range.
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Performance of the mechanism
How close is r̂Ai to the real quality rii :
em := E (|r̂Ai − rii |)

• For a large range of a values,
Ni ’s self-report benefits the
system as well as all networks
other than Ni .

• Optimal choice of a does not
depend on rii and σ′.
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Figure: MAE for rii = 0.75, σ2 = 0.1
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Comparing the final reputation
Under the averaging mechanism E [X̄0i ] = rii .

• For sufficiently large a, Ni

benefits from providing the
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rii = 0.75, σ2 = 0.1
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There is a mutually beneficial region a ∈ [2, 2.5]: the self-report helps
Ni obtain a higher estimated reputation, while helping the system
reduce its estimation error on Ni .
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A heterogenous environment

A mix of T truth types and K − T image types, using the AS
mechanism

• Additional conditions needed to ensure individual rationality
• The higher the percentage of image types, the less likely is a truth

type to participate
• The higher a truth type’s own accuracy, the less interested it is to

participate
• An image type may participate if rii is small.

• The benefit of the mechanism decreases in the fraction of image
types.
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Handling collusion/cliques

• Absolute Scoring and Fair Ranking are naturally collusion-proof.

• PR remains functional using only the cross-observations from a
subset of trusted entities, or even a single observation by the
reputation system.
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Handling collusion/cliques

• If the system lacks independent observations, introducing
randomness can reduce the impact of cliques.

• E.g. extended-AS mechanism: tax determined by random
matching with peers.

• Increased likelihood of being matched with non-colluding users
reduces benefit of cliques.
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Other aspects

• Other mechanisms, e.g., weighted mean of the cross-report, etc.

• Other heterogeneous environments

• Presence of malicious networks.
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Outline of the talk

Incentivizing input – crowd sourcing reputation

• Assume a certain level of aggregation

• Each network possesses information about itself and others

• Can we incentivize networks to participate in a collective effort to
achieve accurate estimates/reputation assessment, while
observing privacy and self interest

Impact of reputation on network behavior

• Benefits from and cost in investing in security

• Positive externality and free rider

• Can the desire for good reputation (or the worry over bad
reputation) positively alter a network’s decision in investment
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Interdependent Security Risks

• Security investments of a network have positive externalities on
other networks.

• Networks’ preferences are in general heterogeneous:
• Heterogeneous costs.
• Different valuations of security risks.

• Heterogeneity leads to under-investment and free-riding.
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Network Security Investment Game

Originally proposed by [Jiang, Anantharam & Walrand, 2011]

• A set of N networks.

• Ni ’s action: invest xi ≥ 0 in security, with increasing effectiveness.

• Cost ci > 0 per unit of investment (heterogeneous).

• fi (x) security risk/cost of Ni where:
• x vector of investments of all users.
• fi (·) decreasing in each xi and convex.

• Ni chooses xi to minimize the cost function

hi (x) := fi (x) + cixi .

• Analyzed the suboptimality of this game.
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Example: a total effort model

A 2-player total effort model: f1(x) = f2(x) = f (x1 + x2), with
c1 = c2 = 1.

h1(x) = −f1(x1 + x2)− x1, h2(x) = −f2(x1 + x2)− x2:

• Let xo be the Nash Equilibrium, and x∗ be the Social Optimum.

• At NE: ∂hi/∂xi = f ′(xo
1 + xo

2 ) + 1 = 0.

• At SO: ∂(h1 + h2)/∂xi = 2f ′(x∗1 + x∗2 ) + 1 = 0.
• By convexity of f (·), xo

1 + xo
2 ≤ x∗1 + x∗2 ⇒ under-investment.
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An illustration
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Figure: Suboptimality gap
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The same game with reputation

The same model, with the addition:

• Ni will be assigned a reputation based on its investment.

• Valuation of reputation given by Ri (x): increasing and concave.

• Ni chooses xi to minimize the cost function

hi (x) := fi (x) + cixi − Ri (x) .
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The effect of reputation: example 1

One’s reputation only depends on one’s own investment:
Ri (x) = Ri (xi )

• R1(x) = kR2(x), k > 1: N1 values reputation more than N2.

• h1(x) = −f1(x1 + x2)− x1 − R1(x1),
h2(x) = −f1(x1 + x2)− x2 − R2(x2).

• At NE: ∂hi/∂xi = f ′(xR
1 + xR

2 ) + 1− R ′i (xR
i ) = 0.

• R ′1(xR
1 ) = R ′2(xR

2 ) and thus xR
1 > xR

2 ⇒ The one who values
reputation more, invests more.

• By convexity of f (·), xo
1 + xo

2 ≤ xR
1 + xR

2 ⇒ Collectively invest
more in security and decrease suboptimality gap.
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An illustration
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Figure: Driving equilibrium investments towards the social optimum

Liu (Michigan) Network Reputation April 25, 2013 50 / 53



Intro Motivation Crowd sourcing Environments Discussion Security investment Conclusion

The effect of reputation: example 2

One’s reputation depends on the total investment: Ri (x1 + x2):

• Assume R1(x1 + x2) = kR2(x1 + x2), k > 1: N1 values reputation
more than N2.

• At NE: ∂hi/∂xi = f ′(xR
1 + xR

2 ) + 1− R ′i (xR
1 + xR

2 ) = 0.
• xR

2 = 0 ⇒ The one who values reputation more, makes all the
investment.

• N1 invests at the same level as they collectively did when using
Ri (xi ), decreasing suboptimality gap.

• Similar to the standard total effort model: agents free-ride.
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Currently under investigation

• More interesting cases lie in between: Ri (r̂i (x)) strongly depends
on xi but weakly depends on xj .

• Mechanism design approach.

• In practice it may be hard for a network to know the security risk
it is subject to; reputation estimate can be used as a proxy:
fi (r̂1, · · · , r̂N).

• Augmenting the action space: e.g., different levels of efforts in
inbound and outbound traffic filtering, which may be a cheaper
and more effective means of improving one’s reputation but not
necessarily one’s true security quality.
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Conclusion

Network reputation as a way to capture, encourage, and inform the
security quality of policies

Incentivizing input – crowd sourcing reputation

• A number of preference models and environments

• Incentive mechanisms in each case

Impact of reputation on network behavior

• A reputation-augmented security investment game.

• Reputation can increase the level of investment and drive the
system closer to social optimum.

• Many interesting open questions.
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