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Sequential compressed sensing

A/D

Digital Micromirror
Device (DMD) Array

Random Number
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Image encoded by DMD
and random basis
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Low-cost, fast, sensitive
optical detection with 

single photodiode

Reconstruction

Compressed, encoded
image data

Image

RNG

We collect compressed sensing projections sequentially.
Can we quickly reconstruct a dynamic scene?
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IED tracking and prediction

Total

191
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1,147
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Total
1,632
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Total
3,420

2009

We sequentially observe IED locations and salient features.
Can we predict likely future locations?
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Online social network inference

We monitor meetings and communications in a social network.
Can we track the dynamic network structure?
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Big challenges processing big data

I Limited processing power, memory, and bandwidth: data is of
such large volume that it cannot be stored and processed
with batch algorithms

I High velocity: data arrives sequentially

I No prior notion of what is “significant”

I “Typical” behavior can change over time: we must adapt
quickly to sharp changes in the environment

I Environmental dynamics are unknown

I Observations may have unknown dependencies or may not
be stochastic

I Data may have corrupted or missing elements
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Stochastic filters

Stochastic filters allow for (sometimes) fast predictions in
dynamic environments, but...

I Their application relies on having a known dynamical
state-space model

I Their analysis relies upon strong modeling assumptions (e.g.
Gaussian processes) and does is not robust to model mismatch
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Problem Formulation
Sequence of events: set initial “prediction” θ̂1. At time t:

1. Observe datum xt
2. Incur loss

`t(θ̂t) , ft(θ̂t ; xt)︸ ︷︷ ︸
data fit

+ r(θ̂t)︸ ︷︷ ︸
regularizer

3. Make a prediction, θ̂t+1

Definition:The Regret of θ̂T = (θ̂1, . . . , θ̂T ) with respect to a
comparator θT = (θ1, . . . , θT ) is

RT (θT ) ,
T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt).

Goal: Generate losses comparable to what a batch algorithm
might achieve; i.e., sublinear regret:

1

T
RT (θT )→ 0 as T →∞
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Examples

I Online compressed sensing:
I xt = light intensity measurement
I θt = scene at time t
I `t(θ) = ‖xt − 〈at , θ〉‖2

2 + τ‖θ‖1

I Social networks:
I xt = agent actions (e.g.

communications or votes)
I θt = amount of influence agents

have on one another
I `t(θ) = − log p(xt |θ) + τ‖θ‖1

where p is a pseudolikelihood
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Scene
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optical detection with 
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Salient features of approach
I causality — for each t, θ̂t may depend only on

x t−1 = (x1, . . . , xt−1)
I (generalized) sparsity — while θ̂t may be very

high-dimensional, it should exhibit low-dimensional structure
or a parsimonious representation.

I dynamic — incorporates or learns environmental dynamics

Good Bad and Ugly
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Bregman divergence and strong convexity

If ` is a convex function, then ∀ θ, θ′

`(θ)− `(θ′)−
〈
∇`(θ′), θ − θ′

〉
≥ 0

If ` is a σ-strongly convex with respect to ‖ · ‖, then ∀ θ, θ′

`(θ)− `(θ′)−
〈
∇`(θ′), θ − θ′

〉
≥ σ

2
‖θ − θ′‖2

Let ψ(θ) be a σ-strongly convex function with respect to ‖ · ‖. The
Bregman divergence associated with ψ is

D(θ, θ′) ≡ Dψ(θ, θ′) , ψ(θ)− ψ(θ′)−
〈
∇ψ(θ′), θ − θ′

〉
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Mirror Descent1

θ̂t+1 = argmin
θ

ηt

〈
∇`t(θ̂t), θ

〉
+ D(θ, θ̂t)

I ∇`t is an arbitrary subgradient of `t
I ηt is the step size

I Special case where D(θ, θ′) = ‖θ − θ′‖2:

θ̂t+1 ≡ θ̂t −
1

ηt
∇`t(θ̂t)

1
Nemirovski & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003
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Mirror Descent

θ̂t+1 = argmin
θ

ηt

〈
∇`t(θ̂t), θ

〉
+ D(θ, θ̂t)

= argmin
θ

ηt

〈
∇ft(θ̂t), θ

〉
+
〈
∇r(θ̂t), θ

〉
+ D(θ, θ̂t)

Problem: when r(θ) corresponds to a sparsity penalty, the estimate
θ̂t+1 is close to sparse, but not actually sparse

I increased computational burden

I more storage requirements

I less interpretable results
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Composite Objective Mirror Descent (COMD)2

θ̂t+1 =argmin
θ

ηt

〈
∇ft(θ̂t), θ

〉
+ ηtr(θ) + D(θ, θ̂t)

or equivalently (in unconstrained cases)

(1) move in direction of negative gradient of ft

θ̃t+1 =argmin
θ

ηt

〈
∇ft(θ̂t), θ

〉
+ D(θ, θ̂t)

(2) regularize

θ̂t+1 =argmin
θ

ηtr(θ) + D(θ, θ̃t+1)

2
Duchi, Shalev-Shwartz, Singer and Tewari, 2010 16 / 45



Static regret bounds
Theorem3: Assume θT is static, so that θ , θ1 = θ2 = . . . = θT .
If ηt ∝ 1/

√
T , then

RT (θT ) = O
(√

T
)
.

Furthermore, if r is strongly convex and ηt ∝ 1/t, then

RT (θT ) =O (logT ) .

So what’s missing?

I Comparing against a static model is weak; how do we do
relative to a dynamic comparator?

I What about dynamic environments?

I What about unknown environmental dynamics?
3

Duchi et al. 2010
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Tracking, Shifting, and Adaptive Regret

I Adaptive Regret4 looks at accumulated loss over an arbitrary
time interval of length τ relative to a static comparator:

Rτ , max
[r , s] ⊂ [1,T ] :

s − r ≤ τ

s∑
t=r

`t(θ̂t)−min
θ

s∑
t=r

`t(θ)

I Shifting and Tracking regret5

I Compare output of algorithm to sequence (θ1, . . . , θT ) which
can be chosen collectively with full knowledge of all data

I Typical bounds vary with complexity of comparator sequence

4
Littlestone & Warmuth 2001, Hazan & Seshadhri 2009

5
Herbster & Warmuth 2001, Cesa-Bianchi & Lugosi 2006, Cesa-Bianchi et al. 2012
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COMD Regret against time-varying reference
models

Theorem: If ηt = 1/
√
t, then

RT (θT ) = O
(

(VT (θT ) + 1)
√
T
)
,

where

VT (θT ) ,
T−1∑
t=1

‖θt+1 − θt‖

measures the temporal variation in θT .

In other words, the algorithm can track a dynamically changing
environment, provided the changes are sufficiently infrequent
and/or smooth (restrictive!)
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Dynamic Mirror Descent (DMD)
Our approach: Let Φt : Θ 7→ Θ be a series of predetermined
dynamical models; set

θ̃t+1 = arg min
θ

ηt〈∇ft(Φt θ̃t), θ〉+ ηtr(θ) + D(θ‖Φt θ̃t)

θ̂t+1 = Φt+1θ̃t+1

Theorem: Assume each Φt is contractive, so that

D(Φtθ‖Φtθ
′) ≤ D(θ‖θ′) ∀θ, θ′.

Then if ηt ∝ 1√
t

we have RT (θT ) ≤ O([1 + VΦ(θT )]
√
T ) where

VΦ(θT ) ,
T∑
t=1

‖θt+1 − Φt+1θt‖

measures the deviation of the comparator from the dynamic
models (Φts).
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Sketch proof
Consider no regularization, Φt = Φ ∀t.

Recall

θ̃t+1 = arg min
θ

ηt〈∇ft(Φt θ̃t), θ〉+ D(θ‖Φt θ̃t).

By the first-order optimality condition,

〈ηt∇ft(Φθ̃t), θ̃t+1−θ〉 ≤ 〈∇ψ(Φθ̃t)−∇ψ(θ̃t+1), θ̃t+1−θ〉 ∀θ. (1)

Now

ft(θ̂t)− ft(θt) = ft(Φθ̃t)− ft(θt)

≤〈∇ft(Φθ̃t),Φθ̃t − θt〉 (convexity of ft)

≤(1/ηt)〈∇ψ(Φθ̃t)−∇ψ(θ̃t+1), θ̃t+1 − θt〉

+ 〈∇ft(Φθ̃t),Φθ̃t − θt〉 by (1)
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Sketch proof (cont.)

ft(θ̂t)− ft(θt)

≤ 1

ηt
〈∇ψ(Φθ̃t)−∇ψ(θ̃t+1), θ̃t+1 − θt〉 (from before)

+ 〈∇ft(Φθ̃t),Φθ̃t − θt〉

=
1

ηt

[
D(θt‖Φθ̃t)− D(θt+1‖Φθ̃t+1) (telescopes)

+ D(θt+1‖Φθ̃t+1)− D(Φθt‖Φθ̃t+1) (bounded by ‖θt+1 − Φθt‖)

+ D(Φθ‖Φθ̃t+1)−D(θt‖θ̃t+1)
(≤ 0 because Φ con-
tractive)

−D(θ̃t+1‖Φθ̃t)
]

(= O(ηt))

+ 〈∇ft(Φθ̃t),Φθ̃t − θ̃t+1〉
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Collection of Dynamical Models

Consider a collection of dynamics {Φ1,Φ2, . . .ΦN} and a
comparator sequence that can change dynamics at unknown times
ti , 1 = t1 < · · · < tm+1 = T + 1

θ̂
(i)
t =DMD prediction using Φi

w̃i ,t =wi ,t−1 exp(−ηr `t(θ̂(i)
t ))

wi ,t =(λ/N)
∑N

j=1 w̃j ,t + (1− λ)w̃i ,t (weight on i th dynamics)

θ̂t =
N∑
i=1

wi ,t θ̂
(i)
t /

N∑
i=1

wi ,t

(weighted combination
of individual dynamics’
predictions)
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DFS Regret Bound

RT (θT ) ≤ O
(√

T
[
4V (m)(θT )

+ m logN − log[λm(1− λ)(T−m−1)]
])

where

V (m)(θT ) , min
t1,...,tm+1

m∑
k=1

min
ik∈{1,...,N}

tk+1−1∑
t=tk

‖Φikθt − θt+1‖

Analogous to VΦ(θT ) with different dynamics on different
intervals.

In other words, regret scales with how much best comparator
sequence of predictions (that someone with infinite computational
power and non-sequential data might compute) deviates from the
best series of dynamical models one might choose to fit that
comparator.
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Online video compressed sensing
Observe xt = Atθt + nt , At ∈ R500×22500
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Online video compressed sensing
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Left Plot: Instantaneous loss of a collection of DMD predictions.

Right Plots: Example estimates at t = 480.
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Poisson video foreground and background separation

Truth Observation

Foreground Est. Background Est.
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Online solar data analysis, full data
Process all pixels from every frame, look for anomalies in peaks in
losses
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Online solar data analysis, 25% missing
Process 75% of pixels from each frame, look for anomalies in
peaks in losses
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Online solar data analysis, 50% missing
Process 50% of pixels from each frame, look for anomalies in
peaks in losses
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Solar_Flare_50.mp4
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Online solar data analysis, 75% missing
Process 25% of pixels from each frame, look for anomalies in
peaks in losses

31 / 45


Solar_Flare_25.mp4
Media File (video/mp4)



Example: online social network inference

Consider the following problem:

Given sequential observations of agents’ behavior in a
social network, perform online inference of network
structure

Individual sequence (universal prediction) setting:

I No probabilistic generative model of agents’ behavior

I Instead, pick a suitable reference class of models and seek to
minimize regret — difference between cumulative performance
of our online scheme and that of the best model selected in
hindsight given the entire observation sequence
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Online social network inference

Start with initial estimate of network structure.
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Online social network inference

x1

Observe first meeting or communication, see how well it fits initial
prediction, and update network estimate.
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Online social network inference

x2

Observe second meeting or communication, see how well it fits
previous prediction, and update network estimate.
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Online social network inference

x3

Observe third meeting or communication, see how well it fits
previous prediction, and update network estimate.
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Ising models

I V = {1, . . . , p} is set of p agents making up
network

I For each α ∈ V, let xα ∈ {−1,+1} denote
the action of that agent; x = (xα : α ∈ V)

I Influence (precision) matrix θ = (θαβ)α,β∈V
I Ising model distribution is

Pθ(x) =
1

Z (θ)
exp

 ∑
α,β∈V

θαβxαxβ


I Z (θ) is normalization factor known as the

partition function.
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Pseudolikelihood6

I Ising model Pθ(x) problematic because Z (θ) not efficiently
computable

I Consider instead distribution of xα given the rest of the
network:

Pθ(xα|x\α) =
exp

[
2xα

(
θαα +

∑
β∈V\α θαβxβ

)]
exp

[
2xα

(
θαα +

∑
β∈V\α θαβxβ

)]
+ 1

α

6
Ravikumar, Wainwright & Lafferty 2009; Höfling & Tibshirani 2009
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Online Ising loss function

Data fit: Let

f
(α)
t (θ) , − log (Pθ(xt,α|xt,\α))

and

ft(θ) ,
∑
α∈V

f
(α)
t (θ);

I convex

I computable loss and computable gradient

Regularization: Let

r(θ) = τ‖θ‖1

where τ is a tuning parameter.
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Senate Roll Call

Senate Data Set: US Senate voting records from 1795 to 2011.

At time t, observe the “yea” (+1), “nay” (-1) or absent (0) vote
of p = 100 Senators in vector xt .

θt ∈ [−1, 1]p×p, is the influence matrix where (θt)ab corresponds
to voting influence between agents a and b at time t.

Dynamics: let c∗ = arg maxc |θacθbc |

(Φiθ)ab =

{
(1− αi )θab + αiθac∗θbc∗ if |θac∗θbc∗ | > |θab|
θab otherwise

,

(says that two agents’ correspondence will grow if they have a
strong common bond)

40 / 45



63.8

64

64.2

64.4

64.6

64.8

65

65.2

65.4

65.6

Year

18
39

18
41

18
43

18
45

18
47

18
49

18
51

18
53

18
55

18
57

18
59

18
61

18
63

18
65

18
67

Lo
ss

Average Per Round Loss

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

19
91

19
93

19
95

19
97

Lo
ss

Loss of Select Senators

 

Lieberman
Kerry
McCain
McConnell

1859 1877 1887 1905

=0
=.001
=.002
=.003
=.004

DFS

Average per round loss of each model, and the DFS estimator.
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41 / 45



Year

18
57

18
59

18
61

18
63

18
65

18
67

Average Per Round Loss
 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Year

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

Lo
ss

Loss of Select Senators

 

 

Lieberman
Kerry
McCain
McConnell

1877 1887 1905 1967 2011

=0
=.001
=.002
=.003
=.004

DFS

Moving average losses for select individual senators. Low losses
correspond to consistent voting behavior. Notice, for instance, that
John Kerry (D-MA) has generally very low loss, but spikes around

2006, and drops again before a reelection campaign in 2008.
42 / 45



1859 1877 1887

1905 1967 2011

Influence matrices for select years spanning Civil War and Civil
Rights Movement to present. We see tight factions forming in the
mid- to late-1800s (post Civil War), and less so in the mid-1900s
during the Civil Rights Movement and upheaval among southern

Democrats.
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Conclusions

I Our techniques offer principled
mechanisms for using streaming,
high-dimensional data to track dynamic,
uncertain environments

I Flexible tools are applicable across a

broad range of applications:

I video surveillance
I social network analysis
I data thinning
I monitoring financial transactions

I Computation scales well with data
dimension and sparsity – applicable to
big data problems

I Theoretical performance bounds are
robust to model mismatch, missing data,
and changing dynamics
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Thank you.
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