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Queuing theory
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A fundamental problem in queuing theory
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• m = # servers, n = # customers (or jobs)

• Objective: Characterize L(m,n) = exit time for n-th customer from m-th queue

– Model for production systems, multi-hop networks, pipelined computation
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Why is characterizing latency important?
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• Many existing applications are delay-sensitve

– Production systems, Streaming audio and video - particularly audio

– ⇒ Optimal scheduling/provisioning⇔ delay-throughput tradeoff

• Emerging applications envision control and inference over large networks

– Telemedicine, sensor networks and distributed computation

– ⇒ Quality of Service (QoS) guarantees important

• Network topology design

– Ad-hoc, multi-hop networks prevalent (e.g. deliver interet to rural areas)

– Optimal placement of hops? Remote diagnosis of service bottlenecks?

– ⇒ Statistical characterization of delay important
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A basic model
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Notation:

• Si = Server i ∈ {1, . . . ,m}
• Cj = Customer j ∈ {1, . . . , n}
• w(i, j) = Service time for Cj at Si

Assumptions:

• Infinitely long buffer

• Arrival process is Poissonian with rate α

• w(i, j)
ind.∼ exp(1/µi)⇔ M/M/m queue

Question: Average Delay?

5



Little’s Law and average delay

Informally:

Avg. Time in System =
Avg. # of Cust.

Eff. Arrival Rate

By Burke’s Theorem:

P(#Cust. in Queue i = k) =

(
1−

µi

α

)k(µi
α

)
for k = 0, 1, . . .

Consequently:

⇒ Avg.# Cust. in System =

m∑
i=1

µi

µi − αi
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What Little’s law says and does not say

Avg.# Time in System =
1

α

m∑
i=1

µi

µi − αi

Mathematically:

Avg.# Time in System = lim
t→∞

∑α(t)
i=0 Time spent by Customer i

α(t)

• α(t) = # Customers who arrived in the interval [0, t]

• No insights on: variance, pdf, bottleneck behavior, etc.

• Contrast with L(m,n) = exit time for Customer n from Server m

– Transient-like statistic! Computable?
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What Little’s law says and does not say

Avg.# Time in System =
1

α

m∑
i=1

µi

µi − αi

Mathematically:

Avg.# Time in System = lim
t→∞

∑α(t)
i=0 Time spent by Customer i

α(t)

• α(t) = # Customers who arrived in the interval [0, t]

• No insights on: variance, pdf, bottleneck behavior, etc.

• Contrast with L(m,n) = exit time for Customer n from Server m

– Transient-like statistic! Computable?

– Yes! - Using random matrix theory!
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What makes the problem difficult?
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• m = # servers, n = # customers (or jobs)

• Objective: Characterize L(m,n) = exit time for n-th customer from m-th queue

– Strong interaction between arrival and departure process⇒ no independence
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Main message

New insights beyond Little’s Law:

• Latency mean and variance can be explicitly computed! X

• Analysis reveals emergence of phase transitions X

• Rigorous basis for statistical anomaly testing X

• Can show that O(n1/3) jobs have statistically independent latencies X

• Extends easily to quasi-reversible networks (thanks Demos!) X

• Analysis of queue-state dependent servicing (inspired by backpressure algorithms) X

• Results appear to hold even for non-exponential service times X

– Universality conjecture!

All made possible due to connection with random matrix theory!
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Phase transitions
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A numerical example

• G = Gaussian random matrix

– G = randn(n,n) or G = sign(randn(n,n))

• Xn =
G+G′
√

2n

• X̃n = Xn + Pn
– Pn = θ u u′

– u is a fixed, non-random unit norm vector

– Xn has i.i.d. zero mean, variance 1/2n entries (on off-diagonal)

Question: Largest eigenvalue? Variation with θ?
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One experimental realization
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• θ = 4, n = 500

• Bulk obeys semi-circle law on [−2, 2]

• Largest eig. ≈ 4.2
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An eigenvalue phase transition
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Experiment: n = 500
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• Clear phase transition @ θ = 1 with increasing n
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Phase transition prediction

Theorem: Consider X̃n = Xn + θuu′

λ̃1
a.s.−→

θ +
1

θ
, θ > 1

2, otherwise

|〈ũ1, u〉|2
a.s.−→


(

1−
1

θ2

)
, θ > 1

0, otherwise

• Eigenvalue result first due to Peche (2006), Peche-Feral (2007)

• Eigenvector result new (and derived by us)

• Eigenvalues and eigenvectors are biased

15



Phase transitions & Random matrix theory

or

What theory predicts the phase transition?
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Definitions and assumptions

Spectral measure: Eigenvalues of Xn are λ1, . . . , λn:

µXn =
1

n

n∑
i=1

δλi

Assumptions:

1. µXn
a.s.−→ µX

2. suppµX compactly supported on [a, b]

3. max(eig)
a.s.−→ to b
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A basic signal-plus-noise model

X̃n = θuuH +Xn

Assumptions:

• Xn is symmetric with n real eigenvalues

• θ1 > . . . > θk > 0

• Xn = QΛQ′ where Q is a Haar distributed unitary (or orthogonal) matrix

• u is a unit-norm vector

• Xn = GG∗ will satisfy conditions

18



Phase transition in the eigenvalues

Theorem [Benaych-Georges and N.]: As n −→ ∞,

λ1(X̃n)
a.s.−→

{
G−1
µ (1/θi) if θ > θc := 1/Gµ(b

+),

b otherwise,

• Critical threshold depends explicitly on spectral measure of “noise”

Cauchy transform of µ:

Gµ(z) =

∫
1

z − y
dµ(y) for z /∈ suppµX.
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Phase transition of eigenvectors

Theorem [Benaych-Georges and N.]: As n −→ ∞, for θ > θc:

|〈ũ1, u〉|2
a.s.−→ −

1

θ2
iG
′
µ(ρ)

• ρ = G−1
µ (1/θi) is the corresponding eigenvalue limit

Theorem: As n −→ ∞, for θ ≤ θc:

〈ũ1, u〉
a.s.−→ 0

• Eigenvalue density at edge needed of form (x− b)α with α ∈ (0, 1]
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Above phase transition
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(a) Eigenvalue: θ > θc
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(b) Eigenvector: θ > θc
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Below phase transition
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(d) Eigenvector: θ ≤ θc
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The queuing theory connection
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Problem setup
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Assumptions:

• Infinitely long buffer

• Arrival process is Poissonian with rate α

• w(i, j)
ind.∼ exp(1/µi)⇔ M/M/m queue

Objective: Compute L(m,n) = exit time for batch of n customers when

• Queues are in equilibrium before the batch of n customers arrive
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The random matrix connection

Theorem [Baik & N., 2012]:

L(m,n)
D
= λ1(W )

• W = Γ1/2gg∗Γ1/2 + Σ1/2GG∗Σ1/2

• G is an m× (n− 1) matrix of i.i.d. CN(0, 1) entries

• g is an m× 1 vector of i.i.d CN(0, 1) entries

• Σ = diag(1/µ1, . . . , 1/µm)

• Γ = diag (1/(µ1 − α), . . . , 1/(µm − α))

• Sanity check: α = 0, n = 1, L(m,n) =
∑

i 1/µi|gi|
2

– |gi|2 is chi-squared with 2 d.o.f. ⇔ Exponential!
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The random matrix connection

Theorem [Baik & N., 2012]:

L(m,n)
D
= λ1(W )

• W = Γ1/2gg∗Γ1/2 + Σ1/2GG∗Σ1/2

– Rank-one-signal plus noise⇒ expect phase transition!

• G is an m× (n− 1) matrix of i.i.d. CN(0, 1) entries

• g is an m× 1 vector of i.i.d CN(0, 1) entries

• Σ = diag(1/µ1, . . . , 1/µm)

• Γ = diag (1/(µ1 − α), . . . , 1/(µm − α))
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New insight: phase transitions in queuing behavior
Recall:

• Arrival process is Poissonian with rate α < µi

• w(i, j)
ind.∼ exp(1/µi)⇔ M/M/m queue

A critical rate:

lcrit = z such that
∑
i

1

(µi − z)2
−
n

z2
= 0, z = lcrit ∈ (0, µmin)

Theorem [Baik & N. , 2012]:

• Case 1: 0 < lcrit < α⇔ arrival rate is faster than critical rate

– L(m,n) is normally distributed: mean O(n), variance O(m)

• Case 2: lcrit > µmin ⇔ slowest server is slower than critical rate

– L(m,n) is normally distributed: mean O(n), variance O(m)

• Case 3: α < lcrit < µmin ⇔ slowest server fast enough, arrival rate slow enough

– L(m,n) is Tracy-Widom distributed: mean O(n) and variance O(m2/3)

27



Tracy-Widom versus Normal
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New insights: phase transitions and more

A critical rate:

lcrit = z such that
∑
i

1

(µi − z)2
−
n

z2
= 0, z = lcrit ∈ (0, µmin)

Theorem [Baik & N. , 2012]:

• Case 1: 0 < lcrit < α⇔ arrival rate is faster than critical rate

– L(m,n) is normally distributed: mean O(n), variance O(m)

• Case 2: lcrit > µmin ⇔ slowest server is slower than critical rate

– L(m,n) is normally distributed: mean O(n), variance O(m)

• Case 3: α < lcrit < µmin ⇔ slowest server fast enough, arrival rate slow enough

– L(m,n) is Tracy-Widom distributed: mean O(n) and variance O(m2/3)
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The importance of the variance scaling result

An elementary bound:

var maxXi ≤
∑
i

varXi

Upper-bounding latency:

varL(m,n) ≤ O(n)

• Insight 1: Upper bound matched only when there is a bottleneck!

• Insight 2: Realized variance is much less than upper bound!

– ⇒ Service prov. due to upp. bound very conservative

– Opportunity for perf. gains or relax system specs to meet existing QoS reqs!

∗ Work with Mingyan Liu on optimal file-split.in multi-route, multi-hop ntwk
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Numerical results

Mean Variance
m n Experiment Theory Experiment Theory

5 5 13.1024 12.3685 9.4351 15.0981
10 10 30.9954 30.3849 18.6033 23.9668
20 20 68.3172 67.8858 33.0268 38.0449
40 40 145.0274 144.7371 55.1251 60.3926
80 80 300.9902 300.7699 90.0644 95.8673

160 160 615.9515 615.7717 148.8302 152.1799
320 320 1249.4124 1249.4742 236.0294 241.5705
480 480 1885.7545 1885.0567 311.7331 316.5469
640 640 2521.6221 2521.5399 374.6064 383.4693

1000 1000 3955.4348 3955.3710 506.5496 516.3498

Empirical mean and variance of compared to theoretical predictions.

• Here µ1 = . . . = µm = 1

• “8 =∞”
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Numerical results
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Experiment: n = m = 80
Experiment: n = m = 1000
Theory

• Here n = m, µ1 = . . . = µm−1 = 1 , µm = 1/λ; exponential service time

• Regime where the bottleneck does not affect distribution!
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Numerical results
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Lognormal expt.: m = 80
Lognormal expt.: m = 320
Exponential theory

Predicted stoch. 
phase transition @ λ = 2

• Here n = m, µ1 = . . . = µm−1 = 1 , µm = 1/λ; lognormal service time

• Conjecture: Distribution-independent limiting distribution
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A fundamental recursion

Notation:

• Si = Server i ∈ {1, . . . ,m}
• Cj = Customer j ∈ {1, . . . , n}
• w(i, j) = Service time for Cj at Si

• L(i, j) = Exit time for Cj from Si

Fact (Glynn & Whitt, Tembe & Wolff):

L(i, j) = w(i, j) +

{
L(i− 1, j) when L(i, j − 1) < L(i− 1, j),

L(i, j − 1) when L(i, j − 1) > L(i− 1, j).

Equivalently,

L(i, j) = max{L(i− 1, j), L(i, j − 1)}+ w(i, j)
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The directed last-passage percolation problem
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L(m,n) = max{L(m− 1, n), L(m,n− 1)}+ w(m,n)
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The directed last-passage percolation problem

… 

… 

… 

… 

… 

… 

… 

… 

… 

…
 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

(m,1) 

(1,n) (m,n) 

2 3 4 

2 

3 

4 
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L(m,n) = max
π∈P (m,m)

( ∑
(k,`)∈π

w(k, `)

)

• P (m,n) is the set of ‘up/right paths’ ending at (m,n)
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The random matrix connection

L(m, j) = max
π∈P (m,n)

( ∑
(k,`)∈π

w(k, `)

)

Theorem [Borodin & Peché]: Assume

• w(i, j) ∼ exp(1/(ai + bj))

• Xij ∼ CN
(

0, 1
ai+bj

)

⇒ L(m,n)
D
= λ1(XX

∗
)

• Related work by Johansson (2000)

• Result easily extended to Poissonian (discrete) random variables
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The percolation mapping for our problem

S 1 S 2 S 3 S 4 S 5 S 6 S 7

C 1
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µ1 µ2 µ3 µ4 µ5 µ6 µ7α− α− α− α− α−α−α−

• Note that queues are in equilibrium before first customer enters

• Queue lengths are random and have (shifted) geometric distribution

• ⇒ First customer served at Si with rate µi − α, rest with µi
– PASTA property = Poissonian Arrivals See Time Averages

38



Ergo the random matrix connection

Theorem [Baik & N., 2012]:

L(m,n)
D
= λ1(W )

• W = Γ1/2gg∗Γ1/2 + Σ1/2GG∗Σ1/2

– Rank-one-signal plus noise⇒ expect phase transition!

• G is an m× (n− 1) matrix of i.i.d. CN(0, 1) entries

• g is an m× 1 vector of i.i.d CN(0, 1) entries

• Σ = diag(1/µ1, . . . , 1/µm)

• Γ = diag (1/(µ1 − α), . . . , 1/(µm − α))
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Why the random matrix connection?
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Where are the non-intersecting random walks?F I F O 
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• FIFO protocol means exit time trajectories do not intersect

• Mathematics of random walks⇔ classical probability theory

• Mathematics of random walks conditioned not to intersect⇔ random matrix theory
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Bijection with TASEP & corner growth model

http://www-wt.iam.uni-bonn.de/~ferrari/animations/ContinuousTASEP.html
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Non-interesecting random walks are everywhere!

• Taken from Andrei Okounkov’s 2006 Fields Medal Citation
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The traveling salesman problem
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• Fix w(k, l), what order of processing minimizes delay?

– Limits of scheduling? Application-motivated extensions of RMT!
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Main message

New insights beyond Little’s Law:

• Latency mean and variance can be explicitly computed! X

• Analysis reveals emergence of phase transitions X

• Rigorous basis for statistical anomaly testing X

• Can show that O(n1/3) jobs have statistically independent latencies X

• Extends easily to quasi-reversible networks (thanks Demos!) X

• Analysis of queue-state dependent servicing (inspired by backpressure algorithms) X

• Results appear to hold even for non-exponential service times X

– Universality conjecture!

All made possible due to connection with random matrix theory!
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