Laura Balzano, University of Michigan
Stephen Wright, University of Wisconsin

Local Convergence of an Incremental Algorithm for Subspace Identification

Modern Tools of Optimization

\diamond Incremental Gradient

\triangleleft When a cost function can be written as a sum of costs on "data blocks," Incremental gradient performs cost function optimization one "data block" at a time.
\triangleleft Great for real-time or big data applications.
\triangleleft Convergence rates are poor within a local region of the solution, as compared to steepest descent or second-order methods.

\diamond Manifold Optimization

\triangleleft When a non-linear constraint set can be written as a Riemannian manifold, we can use manifold methods for optimization.
\triangleleft Convergence results require armijo step which sometimes adds a large computational burden.

Modern Tools of Optimization

\diamond Incremental Gradient

\triangleleft When a cost function can be written as a sum of costs on "data blocks," Incremental gradient performs cost function optimization one "data block" at a time.

Consider a least-squares problem of the form

$$
\operatorname{minimize}_{x} f(x)=\sum_{i=1}^{n}\left\|g_{i}(x)\right\|^{2}
$$

Modern Tools of Optimization

\diamond Incremental Gradient

$$
\operatorname{minimize}_{x} f(x)=\sum_{i=1}^{n}\left\|g_{i}(x)\right\|^{2}
$$

Now consider the same problem but where $g_{i}(x)$ is a linear function of data block $i, i=1, \ldots, m$ and the incremental gradient algorithm given by [Bertsekas 99, p116] with step size α_{k} at iteration k. Let x^{*} be the optimal solution corresponding to this problem. Then:

1. There exists $\bar{\alpha}>0$ such that if α_{k} is equal to some constant $\alpha \in(0, \bar{\alpha}]$ for all k, the sequence x_{k} converges to some vector $x(\alpha)$. Furthermore, the error $\left\|x_{k}-x(\alpha)\right\|$ converges to 0 linearly. Finally, we have $\lim _{\alpha \rightarrow 0} x(\alpha)=$ x^{*}.
2. If $\alpha_{k}>0$ for all k, and

$$
\alpha_{k} \rightarrow 0, \quad \sum_{k=0}^{\infty} \alpha_{k}=\infty
$$

then $\left\{x_{k}\right\}$ converges to x^{*}.

Modern Tools of Optimization

২Optimization on Manifolds

Consider any optimization problem on a Riemannian manifold \mathcal{M} with a retraction given from the tangent space of \mathcal{M} to \mathcal{M}. Perform any gradient-related descent algorithm using the Armijo step size on a manifold [Absil, Mahony, Sepulchre 08, p62].

Then every limit point of the sequence of iterates is a critical point of the cost function; i.e. $\nabla f=0$.

Outline

\diamond Subspace Tracking with Missing Data
\diamond GROUSE algorithm convergence rate in the fulldata case
«GROUSE algorithm convergence rate with missing data
\diamond Equivalence of grouse to a kind of missing-data incremental SVD

Applications that use Subspaces of R^{n}

(a) Dinosaur

(b) Teddy Bear

Ranking based on human assessment: people's preferences have been demonstrated to lie near a lowdimensional manifold;
we are using a handful of factors only

3D object modeling: when points are matched across frames, they lie in a 3D subspace.

Network data analysis: due to network connectivity constraining the flows, traffic data lie in a low dimensional subspace

Sensor network data analysis: very spatially correlated data lie near a lowdimensional subspace

These Applications all have Missing Data

(a) Dinosaur

(b) Teddy Bear

3D object modeling: missing data due to obstruction from different camera angles

Network data analysis: missing data due to massive throughput

Ranking based on human assessment: missing data due to impossibility of considering all alternatives

Sensor network data analysis: missing data due to cheap sensors and crummy communication links

Subspace Identification: Full Data

Suppose we receive a sequence of length- n vectors that lie in a d-dimensional subspace S :

$$
v_{1}, v_{2}, \ldots, v_{t}, \ldots, \in S \subset \mathbb{R}^{n}
$$

And then we collect T of these vectors into a matrix,

If S is static, we can identify it as the column space of this matrix by performing the SVD:

$$
X=U \Sigma V^{T}
$$

The orthogonal columns of U span the subspace S.

Subspace Identification: Missing Data

Suppose we receive a sequence of incomplete length- n vectors that lie in a d-dimensional subspace S, and $\Omega_{t} \subset\{1, \ldots, n\}$ refers to the observed indices:

$$
\left[v_{1}\right]_{\Omega_{1}},\left[v_{2}\right]_{\Omega_{2}}, \ldots,\left[v_{t}\right]_{\Omega_{t}}, \ldots, \in S \subset \mathbb{R}^{n}
$$

And then we collect T of these vectors into a matrix:

If S is static, we can identify it as the column space of this matrix by performing the SVD:

$$
X=U \Sigma V^{T}
$$

The orthogonal columns of U span the subspace S.

Problem Set-Up

- Seek subspace $S \subset \mathbb{R}^{n}$ of known dimension $d \ll n$.
- Know certain components $\Omega_{t} \subset\{1,2, \ldots, n\}$ of vectors $v_{t} \in S$, $t=1,2, \ldots$ - the subvector $\left[v_{t}\right]_{\Omega_{t}}$.
- Assume that \mathcal{S} is incoherent w.r.t. the coordinate directions.

We'll also assume for purposes of analysis that

- $v_{t}=\bar{U} s_{t}$, where \bar{U} is an $n \times d$ orthonormal spanning \mathcal{S} and the components of $s_{t} \in \mathbb{R}^{d}$ are i.i.d. normal with mean 0 .
- Sample set Ω_{t} is independent for each t with $\left|\Omega_{t}\right| \geq q$, for some q between d and n.
- Observation subvectors $\left[v_{t}\right]_{\Omega_{t}}$ contain no noise.

Problem Set-Up

We take an incremental gradient approach to minimizing over \mathcal{S} the function

$$
F(\mathcal{S})=\sum_{i=1}^{T}\left\|\left[v_{i}-P_{\mathcal{S}} v_{i}\right]_{\Omega_{i}}\right\|_{2}^{2}
$$

Since the variable is a subspace we optimize on the Grassmannian.

GROUSE

Given current estimate U_{t} and partial data vector $\left[v_{t}\right]_{\Omega_{t}}$, where $v_{t}=\bar{U} s_{t}$:

$$
\begin{aligned}
& w_{t}:=\arg \min _{w}\left\|\left[U_{t} w-v_{t}\right]_{\Omega_{t}}\right\|_{2}^{2} ; \\
& p_{t}:=U_{t} w_{t} ; \\
& {\left[r_{t}\right]_{\Omega_{t}}:=\left[v_{t}-U_{t} w_{t}\right]_{\Omega_{t}} ; \quad\left[r_{t}\right]_{\Omega_{t}}:=0 ;} \\
& \sigma_{t}:=\left\|r_{t}\right\|\left\|p_{t}\right\| ;
\end{aligned}
$$

Choose $\eta_{t}>0$;

$$
U_{t+1}:=U_{t}+\left[\left(\cos \sigma_{t} \eta_{t}-1\right) \frac{p_{t}}{\left\|p_{t}\right\|}+\sin \sigma_{t} \eta_{t} \frac{r_{t}}{\left\|r_{t}\right\|}\right] \frac{w_{t}^{T}}{\left\|w_{t}\right\|}
$$

We focus on the (locally acceptable) choice

$$
\eta_{t}=\frac{1}{\sigma_{t}} \arcsin \frac{\left\|r_{t}\right\|}{\left\|p_{t}\right\|}, \quad \text { which yields } \sigma_{t} \eta_{t}=\arcsin \frac{\left\|r_{t}\right\|}{\left\|p_{t}\right\|} \approx \frac{\left\|r_{t}\right\|}{\left\|p_{t}\right\|}
$$

Convergence

To measure the discrepancy between the current estimate $\operatorname{span}\left(U_{t}\right)$ and \mathcal{S}, we use the angles between the two subspaces. There are d angles between two d-dimensional subspaces, and we call them $\phi_{t, i}, i=1, \ldots, d$, where

$$
\cos \phi_{t, i}=\sigma_{i}\left(U_{t}^{T} \bar{U}\right)
$$

where σ_{i} denotes the $i^{t h}$ singular value. Define

$$
\epsilon_{t}:=\sum_{i=1}^{d} \phi_{t, i}=d-\sum_{i=1}^{d} \sigma_{i}\left(U_{t}^{T} \bar{U}\right)^{2}=d-\left\|U_{t}^{T} \bar{U}\right\|_{F}^{2}
$$

We seek a bound for $\mathbb{E}\left[\epsilon_{t+1} \mid \epsilon_{t}\right]$, where the expectation is taken over the random vector s_{t} for which $v_{t}=\bar{U} s_{t}$.

Outline

\diamond Subspace Tracking with Missing Data

\diamond GROUSE algorithm convergence rate in the fulldata case
\diamond GROUSE algorithm convergence rate with missing data

২Equivalence of grouse to a kind of missing-data incremental SVD

Full-Data Case

Full-data case vastly simpler to analyze than the general case. Define

- $\theta_{t}:=\arccos \left(\left\|p_{t}\right\| /\left\|v_{t}\right\|\right)$ is the angle between $R\left(U_{t}\right)$ and \mathcal{S} that is revealed by the update vector v_{t};
- Define $A_{t}:=U_{t}^{T} \bar{U}, d \times d$, nearly orthogonal when $R\left(U_{t}\right) \approx \mathcal{S}$. We have $\epsilon_{t}=d-\left\|A_{t}\right\|_{F}^{2}$.

Lemma

$$
\epsilon_{t}-\epsilon_{t+1}=\frac{\sin \left(\sigma_{t} \eta_{t}\right) \sin \left(2 \theta_{t}-\sigma_{t} \eta_{t}\right)}{\sin ^{2} \theta_{t}}\left(1-\frac{s_{t}^{T} A_{t}^{T} A_{t} A_{t}^{T} A_{t} s_{t}}{s_{t}^{T} A_{t}^{T} A_{t} s_{t}}\right)
$$

The right-hand side is nonnegative for $\sigma_{t} \eta_{t} \in\left(0,2 \theta_{t}\right)$, and zero if $v_{t} \in R\left(U_{t}\right)=\mathcal{S}_{t}$ or $v_{t} \perp \mathcal{S}_{t}$.

GROUSE

Theorem

Suppose that $\epsilon_{t} \leq \bar{\epsilon}$ for some $\bar{\epsilon} \in(0,1 / 3)$. Then

$$
E\left[\epsilon_{t+1} \mid \epsilon_{t}\right] \leq\left(1-\left(\frac{1-3 \bar{\epsilon}}{1-\bar{\epsilon}}\right) \frac{1}{d}\right) \epsilon_{t}
$$

Since the sequence $\left\{\epsilon_{t}\right\}$ is decreasing, by the earlier lemma, we have $\epsilon_{t} \downarrow 0$ with probability 1 when started with $\epsilon_{0} \leq \bar{\epsilon}$.

Linear convergence rate is asymptotically $1-1 / d$.

- For $d=1$, get near-convergence in one step (thankfully!)
- Generally, in d steps (which is number of steps to get the exact solution using SVD), improvement factor is

$$
(1-1 / d)^{d}<\frac{1}{e}
$$

ε_{t} versus $1-1 / \mathrm{d}$

Outline

४Subspace Tracking with Missing Data

\diamond GROUSE algorithm convergence rate in the fulldata case

\diamond GROUSE algorithm convergence rate with missing data
«Equivalence of grouse to a kind of missing-data incremental SVD

Our Result for the General Case

Recall, n is the ambient dimension, d the inherent dimension, we have $|\Omega|>q$ samples per vector. We have assumptions on the number of samples, the coherence in the subspaces and in the residual vectors, and we require that these assumptions hold with probability $1-\delta$ for $\delta \in(0, .6)$. Then for

$$
\epsilon_{t} \leq\left(8 \times 10^{-6}\right)(.6-\delta)^{2} \frac{q^{3}}{n^{3} d^{2}}
$$

we have

$$
\mathbb{E}\left[\epsilon_{t+1} \mid \epsilon_{t}\right] \leq\left(1-(.16)(.6-\delta) \frac{q}{n d}\right) \epsilon_{t}
$$

Comments

$$
\begin{gathered}
\epsilon_{t} \leq\left(8 \times 10^{-6}\right)(.6-\delta)^{2} \frac{q^{3}}{n^{3} d^{2}} \\
\mathbb{E}\left[\epsilon_{t+1} \mid \epsilon_{t}\right] \leq\left(1-(.16)(.6-\delta) \frac{q}{n d}\right) \epsilon_{t}
\end{gathered}
$$

The decrease constant is not too far from that observed in practice; we see a factor of about

$$
1-X \frac{q}{n d}
$$

where X is not much less than 1 .

The threshold condition on ϵ_{t}, however, is quite pessimistic. Linear convergence behavior is seen at much higher values.

Outline

\diamond GROUSE algorithm convergence rate in the fulldata case

\diamond GROUSE algorithm convergence rate with missing data
\diamond Equivalence of grouse to a kind of missing-data incremental SVD

The standard iSVD

Algorithm 2 iSVD: Full Data

Given U_{0}, an arbitrary $n \times d$ orthonormal matrix, with $0<d<n ; \Sigma_{0}$, a $d \times$ d diagonal matrix of zeros which will later hold the singular values, and V_{0}, an arbitrary $n \times d$ orthonormal matrix.
for $t=0,1,2, \ldots$ do
Take the current data column vector v_{t};
Define $w_{t}:=\arg \min _{w}\left\|U_{t} w-v\right\|_{2}^{2}=U_{t}^{T} v_{t} ;$
Define

$$
p_{t}:=U_{t} w_{t} ; \quad r_{t}:=v_{t}-p_{t}
$$

Noting that

$$
\left[\begin{array}{ll}
U_{t} \Sigma_{t} V_{t}^{T} & v_{t}
\end{array}\right]=\left[\begin{array}{ll}
U_{t} & \frac{r_{t}}{\left\|r_{t}\right\|}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{t} & w_{t} \\
0 & \left\|r_{t}\right\|
\end{array}\right]\left[\begin{array}{cc}
V_{t} & 0 \\
0 & 1
\end{array}\right]^{T}
$$

we compute the SVD of the update matrix:

$$
\left[\begin{array}{cc}
\Sigma_{t} & w_{t} \\
0 & \left\|r_{t}\right\|
\end{array}\right]=\hat{U} \hat{\Sigma} \hat{V}^{T}
$$

and set

$$
U_{t+1}:=\left[\begin{array}{ll}
U_{t} & \frac{r_{t}}{\left\|r_{t}\right\|}
\end{array}\right] \hat{U}, \quad \Sigma_{t+1}=\hat{\Sigma}, \quad V_{t+1}=\left[\begin{array}{cc}
V_{t} & 0 \\
0 & 1
\end{array}\right] \hat{V}
$$

end for

How do we incorporate missing data?

\diamond We could put zeros into the matrix
\triangleleft Very interesting recent results from Sourav Chatterjee on one-step "Universal Singular Value Thresholding" show that zero-filling followed by SVD reaches the minimax lower bound on MSE.
\triangleleft But in the average case, we see that convergence of the zero-filled SVD is very very slow.
\diamond Let's instead replace the missing entries with our prediction using the existing model

iSVD with missing data 2

Algorithm 4 iSVD: Partial Data, Forget singular values

Given U_{0}, an $n \times d$ orthonormal matrix, with $0<d<n$;
for $t=0,1,2, \ldots$ do
Take Ω_{t} and $v_{\Omega_{t}}$ from (2.1);
Define $w_{t}:=\arg \min _{w}\left\|U_{\Omega_{t}} w-v_{\Omega_{t}}\right\|_{2}^{2}$;
Define vectors $\tilde{v}_{t}, p_{t}, r_{t}$:

$$
\left(\tilde{v}_{t}\right)_{i}:=\left\{\begin{array}{cc}
v_{i} & i \in \Omega_{t} \\
\left(U_{t} w_{t}\right)_{i} & i \in \Omega_{t}^{C}
\end{array} ; \quad p_{t}:=U_{t} w_{t} ; \quad r_{t}:=\tilde{v}_{t}-p_{t} ;\right.
$$

Noting that

$$
\left[\begin{array}{ll}
U_{t} & \tilde{v}_{t}
\end{array}\right]=\left[\begin{array}{ll}
U_{t} & \frac{r_{t}}{\left\|r_{t}\right\|}
\end{array}\right]\left[\begin{array}{cc}
I & w_{t} \\
0 & \left\|r_{t}\right\|
\end{array}\right]
$$

we compute the SVD of the update matrix:

$$
\left[\begin{array}{cc}
I & w_{t} \\
0 & \left\|r_{t}\right\|
\end{array}\right]=\tilde{U} \tilde{\Sigma}^{2} \tilde{V}^{T},
$$

and set $U_{t+1}:=\left[\begin{array}{ll}U_{t} & \frac{r_{t}}{\left\|r_{t}\right\|}\end{array}\right] \widetilde{U}_{:, 1: d} W_{t}$, where W_{t} is an arbitrary $d \times d$ orthogonal matrix.
end for

GROUSE and iSVD equivalence

Theorem

Suppose we have the same U_{t} and $\left[v_{t}\right]_{\Omega_{t}}$ at the t-th iterations of iSVD and GROUSE. Then there exists $\eta_{t}>0$ in GROUSE such that the next iterates U_{t+1} of both algorithms are identical, to within an orthogonal transformation by the $d \times d$ matrix

$$
w_{t}:=\left[\left.\frac{w_{t}}{\left\|w_{t}\right\|} \right\rvert\, z_{t}\right]
$$

where Z_{t} is a $d \times(d-1)$ orthonormal matrix whose columns span $N\left(w_{t}^{T}\right)$.

The precise values for which GROUSE and iSVD are identical are:

$$
\begin{aligned}
& \lambda=\frac{1}{2}\left[\left(\left\|w_{t}\right\|^{2}+\left\|r_{t}\right\|^{2}+1\right)+\sqrt{\left(\left\|w_{t}\right\|^{2}+\left\|r_{t}\right\|^{2}+1\right)^{2}-4\left\|r_{t}\right\|^{2}}\right] \\
& \beta=\frac{\left\|r_{r}\right\|^{2}\left\|w_{t}\right\|^{2}}{\left\|r_{t}\right\|^{2}\left\|w_{t}\right\|^{2}+\left(\lambda-\left\|r_{t}\right\|^{2}\right)^{2}} \\
& \eta_{t}=\frac{1}{\sigma_{t}} \arcsin \beta .
\end{aligned}
$$

Future Directions

\diamond Apply GROUSE analysis to ell-1 version, GRASTA
\diamond Re-think the proof from new angles.
\diamond We see convergence at higher ε.
\triangleleft We see monotonic decrease at any random initialization.
\diamond We see convergence even without incoherence (but good steps are only made when the samples align).

Thank you!
Questions?

