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Modern Tools of Optimization 

 Incremental Gradient 

 When a cost function can be written as a sum of costs on “data 
blocks,” Incremental gradient performs cost function optimization one 
“data block” at a time. 

 Great for real-time or big data applications. 
 Convergence rates are poor within a local region of the solution, as 

compared to steepest descent or second-order methods. 

 Manifold Optimization 

 When a non-linear constraint set can be written as a Riemannian 
manifold, we can use manifold methods for optimization. 

 Convergence results require armijo step which sometimes adds a 
large computational burden. 
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Consider a least-squares problem of the form

minimize

x

f(x) =

nX

i=1

kg
i

(x)k2 .

Now consider the same problem but where g

i

(x) = v

i

� U

i

x, i = 1, . . . ,m

and the incremental gradient algorithm given by [Bertsekas 99, p116] with step

size ↵

k

at iteration k. Let x

⇤
be the optimal solution corresponding to this

problem. Then:

1. There exists ↵̄ > 0 such that if ↵

k

is equal to some constant ↵ 2 (0, ↵̄] for

all k, the sequence x

k

converges to some vector x(↵). Furthermore, the

error kx
k

� x(↵)k converges to 0 linearly. Finally, we have lim

↵!0 x(↵) =

x

⇤
.

2. If ↵

k

> 0 for all k, and

↵

k

! 0,

1X

k=0

↵

k

=1 ,

then {x
k

} converges to x

⇤
.

We take an incremental gradient approach to minimizing over S the function

F (S) =

TX

i=1

k[v
i

� PSv

i

]⌦ik22 .

Since the variable is a subspace we optimize on the Grassmannian.

The decrease constant is not too far from that observed in practice;

we see a factor of about

1�X

q

nd

where X is not much less than 1.
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Consider any optimization problem on a Riemannian manifold M
with a retraction given from the tangent space of M to M.

Perform any gradient-related descent algorithm using the Armijo

step size on a manifold [Absil, Mahony, Sepulchre 08, p62].

Then every limit point of the sequence of iterates is a critical point

of the cost function; i.e. rf = 0.
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error kx
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Outline 

 Subspace Tracking with Missing Data 

 GROUSE algorithm convergence rate in the full-
data case 

 GROUSE algorithm convergence rate with missing 
data 

 Equivalence of grouse to a kind of missing-data 
incremental SVD 
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(a) Dinosaur

(b) Teddy Bear

Figure 1: Dinosaur [15] and Teddy Bear [31] datasets used
in our experiments. We show one video frame and the 3D
reconstruction from our online algorithm as viewed from
the estimated camera model of each frame. Color indicates
depth.

Rt, no correction is needed. However, in our experiments
we also compare to ISVD, which requires that the the right-
side matrix be orthonormal. In this case, we first “down-
date” our SVD using the algorithm given by Brand [7] be-
fore performing an update.

6. Experiments
We used three different datasets for comparison. First,

we used a synthetically-generated cylinder with a radius of
10 pixels and a height of 50 pixels which was centered at
(50, 50). Five hundred random points were tracked over
200 frames while the cylinder underwent one full rotation.
We added Gaussian noise with � = 2 independently to each
observation. The measurement matrix for this cylinder had
66% of its entries missing. We also compared our meth-
ods using two real datasets: the Dinosaur sequence [15] and
the Teddy Bear sequence [31]. The Dinosaur sequence con-
sists of 4,983 point tracks over 36 frames and includes sev-
eral outliers while the Teddy Bear sequence has 806 tracks
over 200 frames. The Dinosaur and Teddy Bear sequence
have measurement matrices that are missing 91% and 89%
of their entries, respectively. Our reconstruction results for
these datasets are show in Figure 1.

6.1. Online SFM

The number of online SFM algorithms is relatively small
compared to the number of batch algorithms, which we

(a) Synthetic Cylinder (b) Dinosaur

(c) Teddy Bear (d) Legend

Figure 2: Comparison of online SFM algorithms on one
synthetic and two real datasets. Each algorithm was run
with enough iterations to ensure it ran at 10 fps.

compare to in Section 6.2. In our experiments, we evalu-
ate our algorithm grouse along with its robust counterpart
grasta, in addition to both algorithms when residual vec-
tors for past frames are scaled (grouse (scaled) and
grasta (scaled)). We also compare to incremental
SVD (isvd) as well as a robust version, which we denote
isvd-grasta. Our isvd algorithm is the same as in [6].

We attempted to compare to [10], which is a robust on-
line algorithm that optimally fills in missing entries at each
frame using a result from [2]. However, this algorithm re-
quires taking determinants of matrices with potentially ex-
tremely large eigenvalues, which we found to be very un-
stable; it failed about 40% of the time on our data and was
significantly slower; we therefore omitted these results.

In [4], it was shown that for a static subspace, the step
size for grouse should diminish over time. With our for-
mulation, we still have control of the step size by scaling
the residual; here, at iteration t we scale by the function
exp(�t/100). We find that this is important for conver-
gence when grouse is run in batch (Section 6.2). Online,
we show results both with and without scaling the residual
for past frames and do not scale the residual for new frames.

In our experiments, the number of iterations for each al-
gorithm was adjusted so that each ran at 10 fps (results were
similar for 30 fps and the algorithms were implemented in

5

3D object 
modeling: 
when points 
are matched 
across 
frames, they 
lie in a 3D 
subspace. 

Sensor network data analysis: very 
spatially correlated data lie near a low-
dimensional subspace 

Network data analysis: due to 
network connectivity 
constraining the flows, traffic 
data lie in a low dimensional 
subspace Ranking based on 

human assessment: 
people’s preferences 

have been 
demonstrated to  lie 

near a low-
dimensional manifold; 

we are using a 
handful of factors 

only 

Applications that use Subspaces of Rn 
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10 pixels and a height of 50 pixels which was centered at
(50, 50). Five hundred random points were tracked over
200 frames while the cylinder underwent one full rotation.
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observation. The measurement matrix for this cylinder had
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over 200 frames. The Dinosaur and Teddy Bear sequence
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The number of online SFM algorithms is relatively small
compared to the number of batch algorithms, which we
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Figure 2: Comparison of online SFM algorithms on one
synthetic and two real datasets. Each algorithm was run
with enough iterations to ensure it ran at 10 fps.

compare to in Section 6.2. In our experiments, we evalu-
ate our algorithm grouse along with its robust counterpart
grasta, in addition to both algorithms when residual vec-
tors for past frames are scaled (grouse (scaled) and
grasta (scaled)). We also compare to incremental
SVD (isvd) as well as a robust version, which we denote
isvd-grasta. Our isvd algorithm is the same as in [6].

We attempted to compare to [10], which is a robust on-
line algorithm that optimally fills in missing entries at each
frame using a result from [2]. However, this algorithm re-
quires taking determinants of matrices with potentially ex-
tremely large eigenvalues, which we found to be very un-
stable; it failed about 40% of the time on our data and was
significantly slower; we therefore omitted these results.

In [4], it was shown that for a static subspace, the step
size for grouse should diminish over time. With our for-
mulation, we still have control of the step size by scaling
the residual; here, at iteration t we scale by the function
exp(�t/100). We find that this is important for conver-
gence when grouse is run in batch (Section 6.2). Online,
we show results both with and without scaling the residual
for past frames and do not scale the residual for new frames.

In our experiments, the number of iterations for each al-
gorithm was adjusted so that each ran at 10 fps (results were
similar for 30 fps and the algorithms were implemented in

5

3D object 
modeling: 
missing data 
due to 
obstruction 
from different 
camera 
angles 

Sensor network data analysis: missing 
data due to cheap sensors and crummy 
communication links 

Network data analysis: 
missing data due to 
massive throughput 

Ranking based on 
human assessment: 
missing data due to 

impossibility of 
considering all 

alternatives 

These Applications all have Missing Data 
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(I � P )x = Qx ⇥ 0

Qxi = Q(Yi� + ⇥) = 0

j = 1, . . . , n

Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:

v1, v2, . . . , vt, . . . ,⌅ S ⇤ Rn

And then we collect T of these vectors into a matrix, where all the
completed vectors lie in the same d-dimensional subspace S:

X =

�

⇤
| | |
v1 v2 . . . vT

| | |

⇥

⌅

If S is static, we can identify it as the column space of this matrix
by performing the SVD:

X = U�V T .

The orthogonal columns of U span the subspace S.

1

…

9 
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Suppose we receive a sequence of incomplete length-n vectors

that lie in a d-dimensional subspace S, and ⌦t ⇢ {1, . . . , n}
refers to the observed indices:

[v1]⌦1 , [v2]⌦2 , . . . , [vt]⌦t , . . . ,2 S ⇢ Rn

And then we collect T of these vectors into a matrix:

X =

2

4
| | |

[v1]⌦1
[v2]⌦2 . . . [vT ]⌦T

| | |

3

5

If S is static, we can identify it as the column space of this matrix

by performing the SVD:

X = U⌃V

T
.

The orthogonal columns of U span the subspace S.

Image with n pixels

Capture n 3-d object features with a 2-d image

PS = U(U

T
U)

�1
U

T
:

v? = v � PSv

1

Subspace Identification: Missing Data 

…

10 



Problem Set-Up 

11 

Euclidean Subspace Identification

Seek subspace S ⇢ Rn of known dimension d ⌧ n.

Know certain components ⌦t ⇢ {1, 2, . . . , n} of vectors vt 2 S ,
t = 1, 2, . . . — the subvector [vt ]

⌦t .

Assume that S is incoherent w.r.t. the coordinate directions.

We’ll also assume for purposes of analysis that

vt = Ūst , where Ū is an n ⇥ d orthonormal spanning S and the
components of st 2 Rd are i.i.d. normal with mean 0.

Sample set ⌦t is independent for each t with |⌦t | � q, for some q
between d and n.

Observation subvectors [vt ]
⌦t contain no noise.

() Subspace Identification IPAM, January 2013 5 / 38



Problem Set-Up 

12 

IPAM slide tex

Laura Balzano

University of Wisconsin-Madison

February 21, 2013

We take an incremental gradient approach to minimizing over S the function

F (S) =

TX

i=1

k[vi � PSvi]⌦ik22 .

Since the variable is a subspace we optimize on the Grassmannian.

The decrease constant is not too far from that observed in practice;

we see a factor of about

1�X

q

nd

where X is not much less than 1.

The threshold condition on ✏t, however, is quite pessimistic.

Linear convergence behavior is seen at much higher values.

Recall, n is the ambient dimension, d the inherent dimension, we have

|⌦| > q samples per vector. We have assumptions on the number of

samples, the coherence in the subspaces and in the residual vectors,

and we require that these assumptions hold with probability 1� � for

� 2 (0, .6). Then for

✏t  (8⇥ 10

�6
)(.6� �)

2 q

3

n

3
d

2

we have

E[✏t+1|✏t] 
⇣
1� (.16)(.6� �)

q

nd

⌘
✏t .

To measure the discrepancy between the current estimate span(Ut) and S,

we use the angles between the two subspaces. There are d angles between two

d-dimensional subspaces, and we call them �t,i, i = 1, . . . , d, where

cos �t,i = �i(U
T
t

¯

U) ,

1



GROUSE 

13 

One GROUSE Step

Given current estimate Ut and partial data vector [vt ]
⌦t , where vt = Ūst :

wt := argmin
w

k[Utw � vt ]
⌦tk22;

pt := Utwt ;

[rt ]
⌦t := [vt � Utwt ]

⌦t ; [rt ]
⌦

c
t
:= 0;

�t := krtkkptk;
Choose ⌘t > 0;

Ut+1

:= Ut +


(cos�t⌘t � 1)

pt
kptk

+ sin�t⌘t
rt
krtk

�
wT
t

kwtk
;

We focus on the (locally acceptable) choice

⌘t =
1

�t
arcsin

krtk
kptk

, which yields �t⌘t = arcsin
krtk
kptk

⇡ krtk
kptk

.

() Subspace Identification IPAM, January 2013 9 / 38
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To measure the discrepancy between the current estimate span(Ut) and S,

we use the angles between the two subspaces. There are d angles between two

d-dimensional subspaces, and we call them �t,i, i = 1, . . . , d, where

cos �t,i = �i(U
T
t

¯

U) ,

where �i denotes the i

th
singular value. Define

✏t :=

dX

i=1

�t,i = d�
dX

i=1

�i(U
T
t

¯

U)

2
= d� kUT

t
¯

Uk2F .

We seek a bound for E[✏t+1|✏t], where the expectation is taken over the

random vector st for which vt =

¯

Ust.

Suppose we receive a sequence of incomplete length-n vectors

that lie in a d-dimensional subspace S, and ⌦t ⇢ {1, . . . , n}
refers to the observed indices:

[v1]⌦1 , [v2]⌦2 , . . . , [vt]⌦t , . . . ,2 S ⇢ Rn

And then we collect T of these vectors into a matrix:

X =

2

4
| | |

[v1]⌦1
[v2]⌦2 . . . [vT ]⌦T

| | |

3

5

If S is static, we can identify it as the column space of this matrix

by performing the SVD:

X = U⌃V

T
.

The orthogonal columns of U span the subspace S.

1
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Full-Data Case

Full-data case vastly simpler to analyze than the general case. Define
✓t := arccos(kptk/kvtk) is the angle between R(Ut) and S that is
revealed by the update vector vt ;
Define At := UT

t Ū, d ⇥ d , nearly orthogonal when R(Ut) ⇡ S. We
have ✏t = d � kAtk2F .

Lemma

✏t � ✏t+1

=
sin(�t⌘t) sin(2✓t � �t⌘t)

sin2 ✓t

✓
1� sTt AT

t AtA
T
t Atst

sTt AT
t Atst

◆
,

The right-hand side is nonnegative for �t⌘t 2 (0, 2✓t), and zero if
vt 2 R(Ut) = St or vt ? St .

Our favorite choice of ⌘t (defined above) yields �t⌘t = ✓t , which simplifies
the expression above vastly:

✏t � ✏t+1

= 1� sTt AT
t AtA

T
t Atst

sTt AT
t Atst

.

() Subspace Identification IPAM, January 2013 13 / 38
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s̃T�4s̃

s̃T�2s̃
=

P
s̃2i cos

4 �iP
s̃2i cos

2 �i

=

P
s̃2i [1� 2 sin2 �i + sin4 �i ]P

s̃2i (1� sin2 �i )

⇡ 1� 2(
P

s̃2i sin
2 �i )/(

P
s̃2i )

1� (
P

s̃2i sin
2 �i )/(

P
s̃2i )

=
1� 2 

1�  
,

where  := (
P

s̃2i sin
2 �i )/(

P
s̃2i ). Two nice things about  :

E ( ) =
1

d

dX

i=1

sin2 �i =
1

d
✏t , 0    max

i=1,2,...,d
sin2 �i  ✏t .

Theorem

Suppose that ✏t  ✏̄ for some ✏̄ 2 (0, 1/3). Then

E [✏t+1

| ✏t ] 
✓
1�

✓
1� 3✏̄

1� ✏̄

◆
1

d

◆
✏t .

() Subspace Identification IPAM, January 2013 15 / 38

Full-Data: Summary

Since the sequence {✏t} is decreasing, by the earlier lemma, we have ✏t # 0
with probability 1 when started with ✏

0

 ✏̄.

Linear convergence rate is asymptotically 1� 1/d .

For d = 1, get near-convergence in one step (thankfully!)

Generally, in d steps (which is number of steps to get the exact
solution using SVD), improvement factor is

(1� 1/d)d <
1

e
.

Plot some computational results for {✏t} on a semilog plot, comparing
with the curve (1� 1/d)t . n = 10000 and d = 4, 6, 10, 20.

() Subspace Identification IPAM, January 2013 16 / 38



εt versus 1-1/d 
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✏t vs expected (1� 1/d) rate (for various d)

() Subspace Identification IPAM, January 2013 17 / 38

✏t vs expected (1� 1/d) rate (for various d)

() Subspace Identification IPAM, January 2013 18 / 38

n=10000 
d=4, 6, 
10, 20 
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Recall, n is the ambient dimension, d the inherent dimension, we have

|⌦| > q samples per vector. We have assumptions on the number of

samples, the coherence in the subspaces and in the residual vectors,

and we require that these assumptions hold with probability 1� � for

� 2 (0, .6). Then for

✏t  (8⇥ 10

�6
)(.6� �)

2 q

3

n

3
d

2

we have

E[✏t+1|✏t] 
⇣
1� (.16)(.6� �)

q

nd

⌘
✏t .

To measure the discrepancy between the current estimate span(Ut) and S,

we use the angles between the two subspaces. There are d angles between two

d-dimensional subspaces, and we call them �t,i, i = 1, . . . , d, where

cos �t,i = �i(U
T
t

¯

U) ,

where �i denotes the i

th
singular value. Define

✏t :=

dX

i=1

�t,i = d�
dX

i=1

�i(U
T
t

¯

U)

2
= d� kUT

t
¯

Uk2F .

We seek a bound for E[✏t+1|✏t], where the expectation is taken over the

random vector st for which vt =

¯

Ust.

Suppose we receive a sequence of incomplete length-n vectors

that lie in a d-dimensional subspace S, and ⌦t ⇢ {1, . . . , n}
refers to the observed indices:

[v1]⌦1 , [v2]⌦2 , . . . , [vt]⌦t , . . . ,2 S ⇢ Rn

1
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The decrease constant is not too far from that observed in practice;

we see a factor of about

1�X

q

nd

where X is not much less than 1.

The threshold condition on ✏t, however, is quite pessimistic.

Linear convergence behavior is seen at much higher values.

Recall, n is the ambient dimension, d the inherent dimension, we have

|⌦| > q samples per vector. We have assumptions on the number of

samples, the coherence in the subspaces and in the residual vectors,

and we require that these assumptions hold with probability 1� � for

� 2 (0, .6). Then for

✏t  (8⇥ 10

�6
)(.6� �)

2 q

3

n

3
d

2

we have

E[✏t+1|✏t] 
⇣
1� (.16)(.6� �)

q

nd

⌘
✏t .

To measure the discrepancy between the current estimate span(Ut) and S,

we use the angles between the two subspaces. There are d angles between two

d-dimensional subspaces, and we call them �t,i, i = 1, . . . , d, where

cos �t,i = �i(U
T
t

¯

U) ,

where �i denotes the i

th
singular value. Define

✏t :=

dX

i=1

�t,i = d�
dX

i=1

�i(U
T
t

¯

U)

2
= d� kUT

t
¯

Uk2F .

We seek a bound for E[✏t+1|✏t], where the expectation is taken over the

random vector st for which vt =

¯

Ust.
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¯

Ust.

Suppose we receive a sequence of incomplete length-n vectors

that lie in a d-dimensional subspace S, and ⌦t ⇢ {1, . . . , n}
refers to the observed indices:

[v1]⌦1 , [v2]⌦2 , . . . , [vt]⌦t , . . . ,2 S ⇢ Rn

1



Outline 

 GROUSE algorithm convergence rate in the full-
data case 

 GROUSE algorithm convergence rate with missing 
data 

 Equivalence of grouse to a kind of missing-data 
incremental SVD 



The standard iSVD 
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Algorithm 2 iSVD: Full Data
Given U0, an arbitrary n ⇥ d orthonormal matrix, with 0 < d < n; ⌃0, a d ⇥
d diagonal matrix of zeros which will later hold the singular values, and V0, an
arbitrary n⇥ d orthonormal matrix.
for t = 0, 1, 2, . . . do

Take the current data column vector vt;
Define wt := arg minw kUtw � vk22 = UT

t vt;
Define

pt := Utwt; rt := vt � pt;

Noting that

⇥
Ut⌃tV T

t vt

⇤
=

h
Ut

rt
krtk

i 
⌃t wt

0 krtk

� 
Vt 0
0 1

�T

,

we compute the SVD of the update matrix:

⌃t wt

0 krtk

�
= Û ⌃̂V̂ T ,

and set

Ut+1 :=
h
Ut

rt
krtk

i
Û , ⌃t+1 = ⌃̂, Vt+1 =


Vt 0
0 1

�
V̂ .

end for

4. Equivalence by considering ⌃t = I. Finally we propose Algorithm 4. This
is the same as Algorithm 3, except that we don’t carry forward the ⌃t but instead
use the identity matrix in that step. Here we derive the resulting

Ut+1 =
h
Ut

rt
krtk

i
eU

and show that Algorithm 4 is equivalent to grouse in Algorithm 1 for a particular
choice of step-size.

In order to do that we need to find eU , the left singular vectors of

I wt

0 krtk

�
=: A .

These are the same as the eigenvectors of AAT . The eigenvalues of AAT can be
derived the usual way, from the solutions � to the equation det(AAT � �I) = 0. We
have that

AAT � �I =

(1� �)I + wwT krkw

krkwT krk2 � �

�
,

where we drop the subscript t for cleanliness. Using Schur form for the block deter-
minants, where

det
✓

A B
C D

�◆
= det(D)det

�
A�BD�1C

�
,
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How do we incorporate missing data? 

 We could put zeros into the matrix 

  Very interesting recent results from Sourav Chatterjee on one-step “Universal 
Singular Value Thresholding” show that zero-filling followed by SVD reaches 
the minimax lower bound on MSE.  

  But in the average case, we see that convergence of the zero-filled SVD is 
very very slow. 

 Let’s instead replace the missing entries with our 
prediction using the existing model 
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iSVD with missing data 2 

25 

Algorithm 3 iSVD: Partial Data, full SVD
Given U0, an n ⇥ d orthonormal matrix, with 0 < d < n; ⌃0, a d ⇥ d diagonal
matrix of singular values, and V0, an n⇥ d orthonormal matrix.
for t = 0, 1, 2, . . . do

Take ⌦t and v⌦t from (2.1);
Define wt := arg minw kU⌦tw � v⌦tk22;
Define vectors ṽt, pt, rt:

(ṽt)i :=
⇢

vi i 2 ⌦t

(Utwt)i i 2 ⌦C
t

; pt := Utwt; rt := ṽt � pt;

Noting that

⇥
Ut⌃tV T

t ṽt

⇤
=

h
Ut

rt
krtk

i 
⌃t wt

0 krtk

� 
Vt 0
0 1

�T

,

we compute the SVD of the update matrix:

⌃t wt

0 krtk

�
= Û ⌃̂V̂ T ,

and set

Ut+1 :=
h
Ut

rt
krtk

i
Û:,1:d, ⌃t+1 = (⌃̂)1:d,1:d,

end for

Algorithm 4 iSVD: Partial Data, Forget singular values
Given U0, an n⇥ d orthonormal matrix, with 0 < d < n;
for t = 0, 1, 2, . . . do

Take ⌦t and v⌦t from (2.1);
Define wt := arg minw kU⌦tw � v⌦tk22;
Define vectors ṽt, pt, rt:

(ṽt)i :=
⇢

vi i 2 ⌦t

(Utwt)i i 2 ⌦C
t

; pt := Utwt; rt := ṽt � pt;

Noting that

⇥
Ut ṽt

⇤
=

h
Ut

rt
krtk

i 
I wt

0 krtk

�
,

we compute the SVD of the update matrix:

I wt

0 krtk

�
= eU e⌃eV T ,

and set Ut+1 :=
h
Ut

rt
krtk

i
eU:,1:dWt, where Wt is an arbitrary d ⇥ d orthogonal

matrix.
end for
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GROUSE and iSVD equivalence 
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Relating iSVD and GROUSE

Theorem

Suppose we have the same Ut and [vt ]
⌦t at the t-th iterations of iSVD

and GROUSE. Then there exists ⌘t > 0 in GROUSE such that the next
iterates Ut+1

of both algorithms are identical, to within an orthogonal
transformation by the d ⇥ d matrix

Wt :=


wt

kwtk
|Zt

�
,

where Zt is a d ⇥ (d � 1) orthonormal matrix whose columns span N(wT
t ).

() Subspace Identification IPAM, January 2013 36 / 38

GROUSE and iSVD: Details

The precise values for which GROUSE and iSVD are identical are:

� =
1

2


(kwtk2 + krtk2 + 1) +

q
(kwtk2 + krtk2 + 1)2 � 4krtk2

�

� =
krtk2kwtk2

krtk2kwtk2 + (�� krtk2)2

↵ =
krtk(�� krtk2)

krtk2kwtk2 + (�� krtk2)2

⌘t =
1

�t
arcsin�.
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Future Directions 

  Apply GROUSE analysis to ell-1 version, GRASTA 

  Re-think the proof from new angles.  

 We see convergence at higher ε. 
 We see monotonic decrease at any random initialization. 
 We see convergence even without incoherence (but good 

steps are only made when the samples align). 
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Thank you!  
 
Questions? 


