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Modern Tools of Optimization

<-Incremental Gradient

<> When a cost function can be written as a sum of costs on “data
blocks,” Incremental gradient performs cost function optimization one
“data block” at a time.

< Great for real-time or big data applications.

< Convergence rates are poor within a local region of the solution, as
compared to steepest descent or second-order methods.

<>Manifold Optimization

< When a non-linear constraint set can be written as a Riemannian
manifold, we can use manifold methods for optimization.

< Convergence results require armijo step which sometimes adds a
large computational burden.
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Modern Tools of Optimization

<-Incremental Gradient

<> When a cost function can be written as a sum of costs on “data
blocks,” Incremental gradient performs cost function optimization one
“data block” at a time.

Consider a least-squares problem of the form

minimize, f (z Z | gi(x HZ
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Modern Tools of Optimization

<Incremental Gradient
minimize, f(x Z 1gs(2)|)* .

Now consider the same problem but where g;(x) is a linear function of data
block 7,7 = 1,...,m and the incremental gradient algorithm given by [Bertsekas
99, pl16] with step size aj at iteration k. Let x* be the optimal solution
corresponding to this problem. Then:

1. There exists & > 0 such that if ay is equal to some constant a € (0, @] for
all k, the sequence xj converges to some vector x(«). Furthermore, the

error ||z — ()| converges to 0 linearly. Finally, we have lim,_,q z(a) =

x*.

2. If ap, > 0 for all £, and

oo
ap — 0, g p = OO
k=0

then {xy} converges to x*.
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Modern Tools of Optimization

<>Optimization on Manifolds

Consider any optimization problem on a Riemannian manifold M
with a retraction given from the tangent space of M to M.
Perform any gradient-related descent algorithm using the Armijo
step size on a manifold [Absil, Mahony, Sepulchre 08, p62].

Then every limit point of the sequence of iterates is a critical point
of the cost function; i.e. Vf = 0.
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Outline

<>Subspace Tracking with Missing Data

<-GROUSE algorithm convergence rate in the full-
data case

<GROUSE algorithm convergence rate with missing
data

<-Equivalence of grouse to a kind of missing-data
incremental SVD
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Applications that use Subspaces of R"

UNIVERSITY of MICHIGAN ® COLLEGE of ENGINEERING

3D object
" modeling:
| “if“a ~ when points
é ©are matched
across
frames, they
lie in a 3D
subspace.

(a) Dinosaur

Network data analysis: due to
network connectivity
constraining the flows, traffic
data lie in a low dimensional
subspace

(b) Teddy Bear

Ranking based on

human assessment:
people’s preferences
have been
demonstrated to lie

near a low-
dimensional manifold;
we are using a
handful of factors
only

Sensor network data analysis: very
spatially correlated data lie near a low-
dimensional subspace




These Applications all have Missing Data M ez o
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3D object
" modeling:
“if“a missing data
é © dueto
obstruction
from different
camera
angles

(a) Dinosaur

Network data analysis:
missing data due to
massive throughput

(b) Teddy Bear

Ranking based on
human assessment:
missing data due to

impossibility of

considering all
alternatives

Sensor network data analysis: missing
data due to cheap sensors and crummy
communication links
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Subspace Identification: Full Data

Suppose we receive a sequence of length-n vectors that lie in a

d-dimensional subspace S:
V1,02, ...,V ..., € S CR" .

And then we collect T of these vectors into a matrix,

X = V1 Vo ... vT

If S is static, we can identify it as the column space of this matrix

by performing the SVD: IE-

X =Uxv"
The orthogonal columns of U span the subspace S.

9
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Subspace ldentification: Missing Data

Suppose we receive a sequence of incomplete length-n Vectors
that lie in a d-dimensional subspace S, and €; C {1,.

refers to the observed indices:
v1la,, [v2]ay, - - -5 [V, - -, €S CR” EEEEEEE -
And then we collect T of these vectors into a matrix:
R T
n

X=Uxv".
The orthogonal columns of U span the subspace S.

10
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Problem Set-Up

@ Seek subspace S C R” of known dimension d < n.

@ Know certain components Q; C {1,2,...,n} of vectors v; € S,
t =1,2,... — the subvector [v¢]q,.

@ Assume that S is incoherent w.r.t. the coordinate directions.

We'll also assume for purposes of analysis that

o v; = Us;, where U is an n x d orthonormal spanning S and the
components of s; € RY are i.i.d. normal with mean 0.

@ Sample set €2 is independent for each t with [Q;| > g, for some g
between d and n.

o Observation subvectors [v¢]q, contain no noise.

11
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We take an incremental gradient approach to minimizing over S the function

T

F(8) =" |l[v; — Psvila,

1=1

2
9 -

Since the variable is a subspace we optimize on the Grassmannian.

12
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GROUSE

Given current estimate U; and partial data vector [v¢|q,, where v; = Us;:

Grassmannian
Rank-One Update

Wy 1= arg mmi/n 1[Usw — v¢]a, ||3;

Subspace
pt == Urwy; Estimation
[rt] o, [vi — Uswi]q,; [rt]Qg = 0;
o= ||rellllpell;

Choose 7 > 0;

) It WtT
Ut11 := Us + |(coson: — 1) + sin 0Ny
| t|| 2]
We focus on the (locally acceptable) choice
1
7¢ = — arcsin [rell ,  which yields osn; = arcsin —— Hr H ”rtH .
o re pel ~ Tlpel

13
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Convergence

To measure the discrepancy between the current estimate span(U;) and S,
we use the angles between the two subspaces. There are d angles between two
d-dimensional subspaces, and we call them ¢;;, ¢ =1,...,d, where

cos gy = o (ULT)

where o; denotes the i singular value. Define

d d
&= dri=d—> oi(ULU)? =d— UL U|% .
1=1 1=1

We seek a bound for E[e;y1]e;|, where the expectation is taken over the
random vector s; for which v; = Us;.

14
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Outline

<-GROUSE algorithm convergence rate in the full-
data case



m MICHIGAN ENGINEERING

Full-Data Case

Full-data case vastly simpler to analyze than the general case. Define
@ 0, := arccos(||pt||/||vt]|) is the angle between R(U;) and S that is
revealed by the update vector v;;

o Define A; := U/ U, d x d, nearly orthogonal when R(U;) =~ S. We
have e; = d — ||A¢]|%.

Sin(O'tT]t) Sin(29t — O'tnt) (1 B StTAZ-AtAtTAtSt)

Sin2 Qt StTAtTAtSt ’
The right-hand side is nonnegative for otn: € (0,260;), and zero if
V¢ € R(Ut) = St or V¢ 1 St-

€t — €41 —

16
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GROUSE

Suppose that e; < € for some € € (0,1/3). Then

1—-3e) 1
E[€t+1|€t]§ (1_<1_€>3)6t

Since the sequence {¢;} is decreasing, by the earlier lemma, we have €; | 0
with probability 1 when started with ¢g < €.

Linear convergence rate is asymptotically 1 — 1/d.
@ For d =1, get near-convergence in one step (thankfully!)

@ Generally, in d steps (which is number of steps to get the exact
solution using SVD), improvement factor is

(1-1/d)? < é
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Outline

<GROUSE algorithm convergence rate with missing
data
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Our Result for the General Case

Recall, n is the ambient dimension, d the inherent dimension, we have
12| > ¢q samples per vector. We have assumptions on the number of
samples, the coherence in the subspaces and in the residual vectors,
and we require that these assumptions hold with probability 1 — ¢ for

6 € (0,.6). Then for
4

n3d?

e < (8 x1079)(.6 — 6)?

we have

Elesile;] < (1 — (.16)(.6 — 5)%) € .

20
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Comments

2q3

n3d?

e < (8 x107%)(.6 —6)

Elessile:] < (1 — (16)(.6 — 5)%) & .

The decrease constant is not too far from that observed in practice;

we see a factor of about

q
1 — X—
nd

where X is not much less than 1.

The threshold condition on ¢;, however, is quite pessimistic.
Linear convergence behavior is seen at much higher values.

21
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Outline

<-Equivalence of grouse to a kind of missing-data
incremental SVD
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The standard iSVD e e = contona e

Algorithm 2 iSVD: Full Data

Given Uy, an arbitrary n X d orthonormal matrix, with 0 < d < n; g, a d X
d diagonal matrix of zeros which will later hold the singular values, and 1}, an
arbitrary n X d orthonormal matrix.
fort=0,1,2,... do

Take the current data column vector vy;

Define w; := arg min,, ||Uyw — v||3 = U vy;

Define

pe = Urwye; 14 1= v — Py

Noting that

R

we compute the SVD of the update matrix:

[Et W+

=UsvT,
0 IIMII

and set

end for
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How do we incorporate missing data?

<>We could put zeros into the matrix

< Very interesting recent results from Sourav Chatterjee on one-step “Universal
Singular Value Thresholding” show that zero-filling followed by SVD reaches
the minimax lower bound on MSE.

< But in the average case, we see that convergence of the zero-filled SVD is
very very slow.

<Let’s instead replace the missing entries with our
prediction using the existing model

24
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ISVD with missing data 2 R = SN

Algorithm 4 iSVD: Partial Data, Forget singular values

Given Uy, an n X d orthonormal matrix, with 0 < d < n;
fort=0,1,2,... do

Take €; and vg, from (2.1);

Define w; := argmin,, |Uq,w — vq,||3;

Define vectors v, py, T4:

(171&)' = Vi Z Y. ;o pei=Urwy;  Te 1= 0p — Dy
v (Utwt)i 1 € th ’ ’ ’

Noting that

we compute the SVD of the update matrix:

I wy ] sy T
—UxvT,
[0 7]

and set Uy;q = [Ut Tt||i| (7;,1:th, where W; is an arbitrary d x d orthogonal

matrix.

end for 25
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Suppose we have the same U; and [v¢|q, at the t-th iterations of iSVD
and GROUSE. Then there exists n; > 0 in GROUSE such that the next
iterates U1 1 of both algorithms are identical, to within an orthogonal
transformation by the d x d matrix

Wt — [ Wi |Zt]7

Iwe |

where Z; is a d x (d — 1) orthonormal matrix whose columns span N(w,).

The precise values for which GROUSE and iSVD are identical are:

1
A= 5 | (lwell® + fIrel® + 1) + \/(HWtH2 +Irell® + 1) — 4l |I?
3 e[l we 1®
IrelI2llwel[? + (A = [l ]|%)?
1 :
1y = — arcsin 3.

Ot 26
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Future Directions

< Apply GROUSE analysis to ell-1 version, GRASTA

<> Re-think the proof from new angles.

<-We see convergence at higher €.
<We see monotonic decrease at any random initialization.

<-We see convergence even without incoherence (but good
steps are only made when the samples align).

27
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Thank you!

Questions?



