NEW COMMUNICATION STRATEGIES FOR BROADCAST AND INTERFERENCE NETWORKS

S. Sandeep Pradhan

(Joint work with Arun Padakandla and Aria Sahebi)
University of Michigan, Ann Arbor

Distributed Information Coding

- Proliferation of wireless data and sensor network applications
- Supported by distributed information processing
- Information-theoretic perspective

1: Distributed Field Gathering

2: Broadcast and Interference Networks

Information and Coding theory: Tradition

Information Theory:

- Develop efficient communication strategies
- No constraints on memory/computation for encoding/decoding
- Obtain performance limits that are independent of technology

Information and Coding theory: Tradition

Information Theory:

- Develop efficient communication strategies
- No constraints on memory/computation for encoding/decoding
- Obtain performance limits that are independent of technology

Coding Theory:

- Approach these limits using algebraic codes (Ex: linear codes)
- Fast encoding and decoding algorithms
- Objective: practical implementability of optimal communication systems

InFORMATION THEORY: ORDERS OF MAGNITUDE

- Subatomic scale: $10^{-23}-10^{-15}$ Physicists
- Atomic scale: $10^{-15}-10^{-6}$ Chemists

InFORMATION THEORY: ORDERS OF MAGNITUDE

- Subatomic scale: $10^{-23}-10^{-15}$ Physicists
- Atomic scale: $10^{-15}-10^{-6}$ Chemists
- Human scale: $10^{-6}-10^{6}$ Biologists
- Astronomical scale: $10^{6}-10^{27}$ Astromoners

InFORMATION THEORY: ORDERS OF MAGNITUDE

- Subatomic scale: $10^{-23}-10^{-15}$ Physicists
- Atomic scale: $10^{-15}-10^{-6}$ Chemists
- Human scale: $10^{-6}-10^{6}$ Biologists
- Astronomical scale: $10^{6}-10^{27}$ Astromoners
- Information-theory scale: 10^{n}, n sufficiently large.

Probability versus Algebra

Information Theory Tools: based on probability

- Finding the optimal communication system directly is difficult

Probability versus Algebra

Information Theory Tools: based on probability

- Finding the optimal communication system directly is difficult
- Random Coding:
- Build a collection of communication systems (ensemble)
- Put a probability distribution on them
- Show good average performance
- Craft ensembles using probability

Probability versus Algebra

Information Theory Tools: based on probability

- Finding the optimal communication system directly is difficult
- Random Coding:
- Build a collection of communication systems (ensemble)
- Put a probability distribution on them
- Show good average performance
- Craft ensembles using probability

Coding Theory Tools: Abstract algebra (groups, fields)

- Exploit algebraic structure to develop algorithms of polynomial complexity for encoding/decoding
- Study a very small ensemble at a time.

Random Coding in networks

- Prob. distribution on a collection of codebooks (ensemble)
- Extensions of Shannon ensembles

Random Coding in networks

- Prob. distribution on a collection of codebooks (ensemble)
- Extensions of Shannon ensembles
- Lot of bad codebooks in the ensemble
- Average performance significantly affected by these bad codes
- Do not achieve optimality in general
- Many problems have remained open for decades.

Coding theory to the rescue ?

- It turns out that algebraic structure can be used to weed out bad codes

Coding theory to the rescue ?

- It turns out that algebraic structure can be used to weed out bad codes
- Gain barely noticeable in point-to-point communication
- Improvement in second order performance (error exponents)

Coding theory to the rescue ?

- It turns out that algebraic structure can be used to weed out bad codes
- Gain barely noticeable in point-to-point communication
- Improvement in second order performance (error exponents)
- Gains significant in multi-terminal communication

Coding theory to the rescue ?

- It turns out that algebraic structure can be used to weed out bad codes
- Gain barely noticeable in point-to-point communication
- Improvement in second order performance (error exponents)
- Gains significant in multi-terminal communication
- Time for Question?

Broadcast Networks

Point-To-Point communication

Start with Binary symmetric channel

- $N \sim \operatorname{Be}(\delta)$, and + is addition modulo 2
- Capacity $=\max _{P(x)} I(X ; Y)=1-h(\delta)$.

Picture of an optimal code

- Output is within a ball around a transmitted codeword
- Maximum likelyhood decoding

Picture of an optimal code

- Output is within a ball around a transmitted codeword
- Maximum likelyhood decoding
- Time for Question?

Twitter and Eddington Number

- Suppose you to want tweet on a BSC:
- 140 characters

Twitter and Eddington Number

- Suppose you to want tweet on a BSC:
- 140 characters
- Entropy of tweets $=1.9$ bits/character, $\Rightarrow 266$ bits.
- Suppose $\delta=0.11$, then $C=0.5$ bits/channel use

Twitter and Eddington Number

- Suppose you to want tweet on a BSC:
- 140 characters
- Entropy of tweets $=1.9$ bits/character, $\Rightarrow 266$ bits.
- Suppose $\delta=0.11$, then $C=0.5$ bits/channel use
- A tweet can be sent by using BSC 532 times.
- Number of possible tweets $=2^{266}$

Twitter and Eddington Number

- Suppose you to want tweet on a BSC:
- 140 characters
- Entropy of tweets $=1.9$ bits/character, $\Rightarrow 266$ bits.
- Suppose $\delta=0.11$, then $C=0.5$ bits/channel use
- A tweet can be sent by using BSC 532 times.
- Number of possible tweets $=2^{266}$
- Equals the number of protons in the observable universe
- Named after Arthur Eddington.

BSC with cost constaint

- $\frac{1}{n} \mathbb{E} w_{H}\left(X^{n}\right) \leq q$
- i.e., a codeword has at most q fractions of 1 's

BSC wITH COST CONSTAINT

- $\frac{1}{n} \mathbb{E} w_{H}\left(X^{n}\right) \leq q$
- i.e., a codeword has at most q fractions of 1's
- Capacity-cost function

$$
C(q)=\max _{E w_{H}(X) \leq q} I(X ; Y)=H(Y)-H(Y \mid X)=h(q * \delta)-h(\delta)
$$

- $q * \delta=(1-q) \delta+q(1-\delta)$

BSC with Cost CONSTAINT

- $\frac{1}{n} \mathbb{E} w_{H}\left(X^{n}\right) \leq q$
- i.e., a codeword has at most q fractions of 1's
- Capacity-cost function

$$
C(q)=\max _{E w_{H}(X) \leq q} I(X ; Y)=H(Y)-H(Y \mid X)=h(q * \delta)-h(\delta)
$$

- $q * \delta=(1-q) \delta+q(1-\delta)$
- $X \sim \operatorname{Be}(q)$

Picture of an optimal code

- Big circle: the set of all words with q fraction of 1's

BSC WITH COST CONSTRAINT AND INTERFERENCE

- $S \sim \operatorname{Be}(0.5)$ and $N \sim \operatorname{Be}(\delta)$
- S is non-causally observable only at encoder

BSC WITH COST CONSTRAINT AND INTERFERENCE

- $S \sim \operatorname{Be}(0.5)$ and $N \sim \operatorname{Be}(\delta)$
- S is non-causally observable only at encoder
- $\frac{1}{n} \mathbb{E} w_{H}\left(X^{n}\right) \leq q$

Applications

Digital watermarking, data hiding, covert communication

Original Image

- Blind watermarking

Applications

Digital watermarking, data hiding, covert communication

Original Image

- Blind watermarking
- You want big govt. but you dont trust it too much

BSC WITH COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?

BSC with COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?
- A1. Try cancelling it

BSC wITH COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?
- A1. Try cancelling it
- You cannot, you do not have enough number of ones.

BSC WITH COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?
- A1. Try cancelling it
- You cannot, you do not have enough number of ones.
- A2. Ride on the interference

BSC with COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?
- A1. Try cancelling it
- You cannot, you do not have enough number of ones.
- A2. Ride on the interference
- Nudge the interference with channel input toward a codeword
- But, you have got just q fraction of ones.

BSC WITH COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?
- A1. Try cancelling it
- You cannot, you do not have enough number of ones.
- A2. Ride on the interference
- Nudge the interference with channel input toward a codeword
- But, you have got just q fraction of ones.
- Gelfand-Pinsker: Nudge toward a codeword from a set

BSC WITH COST CONSTRAINT AND INTERFERENCE

- Q1: What is the communication strategy?
- A1. Try cancelling it
- You cannot, you do not have enough number of ones.
- A2. Ride on the interference
- Nudge the interference with channel input toward a codeword
- But, you have got just q fraction of ones.
- Gelfand-Pinsker: Nudge toward a codeword from a set
- Q2. How large should the set be?
- Rate of the set: $1-h(q)$.

Picture of an optimal set of codewords

Picture of an optimal set of codewords

- All these codewords are assigned for a message

Picture of an optimal set of codewords

- All these codewords are assigned for a message
- Select a codeword to which you can nudge the interference..
- ..by spending just q fraction of ones $\Rightarrow U=X+S$

Picture of an optimal set of codewords

- All these codewords are assigned for a message
- Select a codeword to which you can nudge the interference..
- ..by spending just q fraction of ones $\Rightarrow U=X+S$
- New effective channel: $Y=U+N$ with capacity $1-h(\delta)$

Precoding for Interference

- Rate of the composite codebook: $1-h(\delta)$
- Rate of a sub-code-book: 1 - $h(q)$
- Transmission rate: difference $=h(q)-h(\delta)$
- Capacity in general case [Gelfand-Pinsker '80]

Precoding for Interference

- Rate of the composite codebook: $1-h(\delta)$
- Rate of a sub-code-book: 1 - $h(q)$
- Transmission rate: difference $=h(q)-h(\delta)$
- Capacity in general case [Gelfand-Pinsker '80]

$$
C(q)=\max _{P(U, X \mid S): E w_{H}(X) \leq q} I(U ; Y)-I(U ; S)
$$

Picture of Capacity cost function

Bottomline: Rate loss as compared to no inferference

Broadcast Channel: Cover '72

- Channel with one input and multiple outputs
- Same signal should contain info. meant for both receivers
- Capacity region still not known in general

Broadcast Channel: Cover '72

- Channel with one input and multiple outputs
- Same signal should contain info. meant for both receivers
- Capacity region still not known in general
- Time for questions?

Marton's Coding Strategy: Two Receivers

- Create a signal that carry information for the second receiver

Marton's Coding Strategy: Two receivers

- Create a signal that carry information for the second receiver
- This signal acts as interference for the signal of the first
- How to tackle (self) interference?

Marton's Coding Strategy: Two receivers

- Create a signal that carry information for the second receiver
- This signal acts as interference for the signal of the first
- How to tackle (self) interference?
- Make the first receiver decode a large portion of interference
- This portion is given by a (univariate) function

Marton's Coding Strategy: Two Receivers

- Create a signal that carry information for the second receiver
- This signal acts as interference for the signal of the first
- How to tackle (self) interference?
- Make the first receiver decode a large portion of interference
- This portion is given by a (univariate) function
- The rest is precoded for using Gelfand-Pinsker strategy

Marton's Coding Strategy: Two Receivers

- Create a signal that carry information for the second receiver
- This signal acts as interference for the signal of the first
- How to tackle (self) interference?
- Make the first receiver decode a large portion of interference
- This portion is given by a (univariate) function
- The rest is precoded for using Gelfand-Pinsker strategy
- This strategy is optimal for many special cases
- We do not know whether it is optimal in general

EXAMPLE: SO-CALLED NON-DEGRADED CHANNEL

- $N_{1} \sim \operatorname{Be}(\delta)$, and $N_{2} \sim \operatorname{Be}(\epsilon)$, and no constraint on X_{2}
- Hamming weight constraint on $X_{1}: \frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$

EXAMPLE: SO-CALLED NON-DEGRADED CHANNEL

- $N_{1} \sim \operatorname{Be}(\delta)$, and $N_{2} \sim \operatorname{Be}(\epsilon)$, and no constraint on X_{2}
- Hamming weight constraint on $X_{1}: \frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$
- Fix $R_{2}=1-h(\epsilon)$, and assume $\delta<\epsilon$

EXAMPLE: SO-CALLED NON-DEGRADED CHANNEL

- $N_{1} \sim \operatorname{Be}(\delta)$, and $N_{2} \sim \operatorname{Be}(\epsilon)$, and no constraint on X_{2}
- Hamming weight constraint on $X_{1}: \frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$
- Fix $R_{2}=1-h(\epsilon)$, and assume $\delta<\epsilon$
- When $q * \delta \leq \epsilon$, Rec. 1 can decode interference completely

EXAMPLE: SO-CALLED NON-DEGRADED CHANNEL

- $N_{1} \sim \operatorname{Be}(\delta)$, and $N_{2} \sim \operatorname{Be}(\epsilon)$, and no constraint on X_{2}
- Hamming weight constraint on $X_{1}: \frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$
- Fix $R_{2}=1-h(\epsilon)$, and assume $\delta<\epsilon$
- When $q * \delta \leq \epsilon$, Rec. 1 can decode interference completely
- a.k.a no interference $\Rightarrow R_{1}=h(q * \delta)-h(\delta)$

EXAMPLE: SO-CALLED NON-DEGRADED CHANNEL

- $N_{1} \sim \operatorname{Be}(\delta)$, and $N_{2} \sim \operatorname{Be}(\epsilon)$, and no constraint on X_{2}
- Hamming weight constraint on $X_{1}: \frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$
- Fix $R_{2}=1-h(\epsilon)$, and assume $\delta<\epsilon$
- When $q * \delta \leq \epsilon$, Rec. 1 can decode interference completely
- a.k.a no interference $\Rightarrow R_{1}=h(q * \delta)-h(\delta)$
- Otherwise, precode for $X_{2}: \Rightarrow R_{1}=h(q)-h(\delta)$

Picture of Rate Region

Decode a univariate function of interference \& precode for the rest

Broadcast with more Receivers

- Marton's strategy can be easily extended
- Consider 3 receiver case: At receiver 1:

Broadcast with more Receivers

- Marton's strategy can be easily extended
- Consider 3 receiver case: At receiver 1:
- (self) interference of signals of Rec. 2 and Rec. 3

Broadcast with more Receivers

- Marton's strategy can be easily extended
- Consider 3 receiver case: At receiver 1:
- (self) interference of signals of Rec. 2 and Rec. 3
- Decode a univariate function of signal meant for Rec. $2 \ldots$
- .. and a univariate function of signal meant for Rec. 3.

Broadcast with more Receivers

- Marton's strategy can be easily extended
- Consider 3 receiver case: At receiver 1:
- (self) interference of signals of Rec. 2 and Rec. 3
- Decode a univariate function of signal meant for Rec. $2 \ldots$
- .. and a univariate function of signal meant for Rec. 3.
- Precode for the rest

Broadcast with more Receivers

- Marton's strategy can be easily extended
- Consider 3 receiver case: At receiver 1:
- (self) interference of signals of Rec. 2 and Rec. 3
- Decode a univariate function of signal meant for Rec. $2 \ldots$
- .. and a univariate function of signal meant for Rec. 3.
- Precode for the rest
- All these being done using random codes
- No need for linear or algebraic codes till now

Broadcast with more Receivers

- Marton's strategy can be easily extended
- Consider 3 receiver case: At receiver 1:
- (self) interference of signals of Rec. 2 and Rec. 3
- Decode a univariate function of signal meant for Rec. $2 \ldots$
- .. and a univariate function of signal meant for Rec. 3.
- Precode for the rest
- All these being done using random codes
- No need for linear or algebraic codes till now
- We can show that such a strategy is strictly suboptimal

New Strategy

- Decode a bivariate function of the signals meant for other two

New Strategy

- Decode a bivariate function of the signals meant for other two
- It turns out that to exploit this we need linear codes

New Strategy

- Decode a bivariate function of the signals meant for other two
- It turns out that to exploit this we need linear codes

- $N_{2}, N_{3} \sim \operatorname{Be}(\epsilon)$, and no constraints on X_{2} and X_{3}
- $N_{1} \sim \operatorname{Be}(\delta)$ and the usual : $\frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$

New Strategy

- Decode a bivariate function of the signals meant for other two
- It turns out that to exploit this we need linear codes

- $N_{2}, N_{3} \sim \operatorname{Be}(\epsilon)$, and no constraints on X_{2} and X_{3}
- $N_{1} \sim \operatorname{Be}(\delta)$ and the usual : $\frac{1}{n} \mathbb{E} w_{H}\left(X_{1}^{n}\right) \leq q$
- Let $R_{2}=R_{3}=1-h(\epsilon)$, the incorrigble brutes!
- Let $\delta<\epsilon$

DEFICIENCY OF RANDOM CODES

- $\delta=0.1$ and $\epsilon=0.2$

DEFICIENCY OF RANDOM CODES

- $\delta=0.1$ and $\epsilon=0.2$

- Marton wishes to decode "full" interference: $\left(X_{2}, X_{3}\right)$:
- $1-h(q * \delta)>2(1-h(\epsilon))$

Deficiency of Random codes

- $\delta=0.1$ and $\epsilon=0.2$

- Marton wishes to decode "full" interference: $\left(X_{2}, X_{3}\right)$:
- $1-h(q * \delta)>2(1-h(\epsilon))$
- a.k.a never going to happen
- Marton ends up doing precoding incurring rate loss

DEFICIENCY OF RANDOM CODES

- $\delta=0.1$ and $\epsilon=0.2$

- Marton wishes to decode "full" interference: $\left(X_{2}, X_{3}\right)$:
- $1-h(q * \delta)>2(1-h(\epsilon))$
- a.k.a never going to happen
- Marton ends up doing precoding incurring rate loss
- New Approach: Try decoding actual interference: $X_{2}+X_{3}$

DEFICIENCY OF RANDOM CODES

- $\delta=0.1$ and $\epsilon=0.2$

- Marton wishes to decode "full" interference: $\left(X_{2}, X_{3}\right)$:
- $1-h(q * \delta)>2(1-h(\epsilon))$
- a.k.a never going to happen
- Marton ends up doing precoding incurring rate loss
- New Approach: Try decoding actual interference: $X_{2}+X_{3}$
- Benefit if the range of $X_{2}+X_{3}$ is \lll range of $\left(X_{2}, X_{3}\right)$

DEFICIENCY OF RANDOM CODES

- $\delta=0.1$ and $\epsilon=0.2$

- Marton wishes to decode "full" interference: $\left(X_{2}, X_{3}\right)$:
- $1-h(q * \delta)>2(1-h(\epsilon))$
- a.k.a never going to happen
- Marton ends up doing precoding incurring rate loss
- New Approach: Try decoding actual interference: $X_{2}+X_{3}$
- Benefit if the range of $X_{2}+X_{3}$ is \lll range of $\left(X_{2}, X_{3}\right)$
- If X_{2} and X_{3} are "random", this wont happen

Picture of sum of two Random sets

Picture of sum of two cosets of a linear code

Exploits of Linear Codes

- The "incorrigible brutes" can have their capacities

Exploits of Linear Codes

- The "incorrigible brutes" can have their capacities
- We just need their codebooks to behave "algebraic"
- We know that linear codes achieve the capacity of BSC

Exploits of Linear Codes

- The "incorrigible brutes" can have their capacities
- We just need their codebooks to behave "algebraic"
- We know that linear codes achieve the capacity of BSC
- rate of $X_{2}=$ rate of $X_{3}=$ rate of $X_{2}+X_{3}=1-h(\epsilon)$
- Since $\delta<\epsilon$, we have for small $q: q * \delta<\epsilon$

Exploits of Linear Codes

- The "incorrigible brutes" can have their capacities
- We just need their codebooks to behave "algebraic"
- We know that linear codes achieve the capacity of BSC
- rate of $X_{2}=$ rate of $X_{3}=$ rate of $X_{2}+X_{3}=1-h(\epsilon)$
- Since $\delta<\epsilon$, we have for small $q: q * \delta<\epsilon$
- Hence $1-h(q * \delta)>1-h(\epsilon)$
- Rec. 1 can decode the actual interference and subtract it off

Exploits of Linear Codes

- The "incorrigible brutes" can have their capacities
- We just need their codebooks to behave "algebraic"
- We know that linear codes achieve the capacity of BSC
- rate of $X_{2}=$ rate of $X_{3}=$ rate of $X_{2}+X_{3}=1-h(\epsilon)$
- Since $\delta<\epsilon$, we have for small $q: q * \delta<\epsilon$
- Hence $1-h(q * \delta)>1-h(\epsilon)$
- Rec. 1 can decode the actual interference and subtract it off
- Then decodes her message at rate $h(q * \delta)-h(\delta)$
- $R_{1}=h(q * \delta)-h(\delta), R_{2}=R_{3}=1-h(\epsilon)$

Symmetry and addition saved the world

We have banked on

SYMMETRY AND ADDITION SAVED THE WORLD

We have banked on

- Channels of Rec. 2 and 3 are symmetric
- so uniform input distribution achieves capacity

SYMMETRY AND ADDITION SAVED THE WORLD

We have banked on

- Channels of Rec. 2 and 3 are symmetric
- so uniform input distribution achieves capacity
- Interference in the broadcast channel is additive

SYMMETRY AND ADDITION SAVED THE WORLD

We have banked on

- Channels of Rec. 2 and 3 are symmetric
- so uniform input distribution achieves capacity
- Interference in the broadcast channel is additive

But Shannon theory is all about not getting bogged down in an example

- Objective is to develop a theory for general case

However?

- Caution: Even in point-to-point communication
- In general, linear codes do not achieve Shannon capacity of an arbitrary discrete memoryless channel

HOWEVER?

- Caution: Even in point-to-point communication
- In general, linear codes do not achieve Shannon capacity of an arbitrary discrete memoryless channel
- What hope do we have in using them for network communication for the arbitrary discrete memoryless case?

Thesis

- Algebraic structure in codes may be necessary in a fundamental way

Thesis

- Algebraic structure in codes may be necessary in a fundamental way
- Algebraic structure alone is not sufficient
- A right mix of algebraic structure along with non-linearity
- Nested algebraic code appears to be a universal structure

Noisy Channel Coding in Point-to-Point case

- Given: Channel $\mathrm{I} / \mathrm{P}=X, \mathrm{O} / \mathrm{P}=Y$, with $p_{Y \mid X}$, and cost function $w(x)$
- Find: maximum transmission rate R for a target cost W.

Noisy Channel Coding in Point-To-Point case

- Given: Channel $\mathrm{I} / \mathrm{P}=X, \mathrm{O} / \mathrm{P}=Y$, with $p_{Y \mid X}$, and cost function $w(x)$
- Find: maximum transmission rate R for a target cost W.
- Answer: Shannon Capacity-Cost function (Shannon '49)

$$
C(W)=\max _{p_{X}: E w \leq W} I(X ; Y)
$$

Picture of A NEAR-OPTIMAL CHANNEL CODE

Obtained from Shannon ensemble

- Box $=\mathcal{X}^{n}$

- Red dot = codeword
- $\mathcal{C}=$ code book

Picture of A NEAR-OPTIMAL CHANNEL CODE

Obtained from Shannon ensemble

- Box $=\mathcal{X}^{n}$

- Red dot = codeword
- $\mathcal{C}=$ code book
- \mathcal{C} has Packing Property
- \mathcal{C} has Shaping Property

Picture of A NEAR-OPTIMAL CHANNEL CODE

Obtained from Shannon ensemble

- Box $=\mathcal{X}^{n}$

- Red dot $=$ codeword
- $\mathcal{C}=$ code book
- \mathcal{C} has Packing Property
- \mathcal{C} has Shaping Property
- Shape Region $=$ Typical set
- Size of code $=I(X ; Y)$
- Codeword density $=$

$$
I(X ; Y)-H(X)=-H(X \mid Y)
$$

New Result: An optimal linear code

- Let $|\mathcal{X}|=\mathrm{p}$, prime no.
- $\mathcal{C}_{1}=$ code book
- \mathcal{C}_{1} has Packing Property
- Size of code

$$
=\log |\mathcal{X}|-H(X \mid Y)
$$

New Result: An optimal linear code

- Let $|\mathcal{X}|=\mathrm{p}$, prime no.
- $\mathcal{C}_{1}=$ code book
- \mathcal{C}_{1} has Packing Property
- Size of code

$$
=\log |\mathcal{X}|-H(X \mid Y)
$$

- Finite field is \mathbb{Z}_{p}
- Bounding Region $=\mathcal{X}^{n}$
- Density $=-H(X \mid Y)$

New Theorem: An optimal nested linear code

- \mathcal{C}_{1} fine code (red \& black)
- \mathcal{C}_{2} coarse code (black)
- \mathcal{C}_{1} has Packing property

Going beyond symmetry

New Theorem: An optimal nested linear code

Going beyond symmetry

- \mathcal{C}_{1} fine code (red \& black)
- \mathcal{C}_{2} coarse code (black)
- \mathcal{C}_{1} has Packing property
- \mathcal{C}_{2} has Shaping property
- Size of $\mathcal{C}_{1}=\log |\mathcal{X}|-H(X \mid Y)$
- Size of $\mathcal{C}_{2}=\log |\mathcal{X}|-H(X)$

New Theorem: An optimal nested linear code

Going beyond symmetry

- \mathcal{C}_{1} fine code (red \& black)
- \mathcal{C}_{2} coarse code (black)
- \mathcal{C}_{1} has Packing property
- \mathcal{C}_{2} has Shaping property
- Size of $\mathcal{C}_{1}=\log |\mathcal{X}|-H(X \mid Y)$
- Size of $\mathcal{C}_{2}=\log |\mathcal{X}|-H(X)$
- Code book $=\mathcal{C}_{1} / \mathcal{C}_{2}$
- Code book size $=I(X ; Y)$
- Achieves $C(W)$

Going beyond addition

- $X_{2} \vee X_{3}$ (logical OR function)

Going Beyond addition

- $X_{2} \vee X_{3}$ (logical OR function)
- What kind of glasses you wear so this looks like addition?

Going Beyond addition

- $X_{2} \vee X_{3}$ (logical OR function)
- What kind of glasses you wear so this looks like addition?
- Can be embedded in the addition table in \mathbb{F}_{3}

	0		1
2			
0	0	1	2
1	1	2	0
2	2	0	1

Going Beyond addition

- $X_{2} \vee X_{3}$ (logical OR function)
- What kind of glasses you wear so this looks like addition?
- Can be embedded in the addition table in \mathbb{F}_{3}

	0		1
2			
	0	1	2
1	1	2	0
	2	0	1

- Map binary sources into \mathbb{F}_{3}, and use linear codes built on \mathbb{F}_{3}
- Can do better than traditional random coding

Going Beyond addition

- $X_{2} \vee X_{3}$ (logical OR function)
- What kind of glasses you wear so this looks like addition?
- Can be embedded in the addition table in \mathbb{F}_{3}

	0		1
2			
0	0	1	2
1	1	2	0
2	2	0	1

- Map binary sources into \mathbb{F}_{3}, and use linear codes built on \mathbb{F}_{3}
- Can do better than traditional random coding
- In general we 'embed' bivariate functions in groups

Groups - An Introduction

- G-a finite abelian group of order n
- $G \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \mathbb{Z}_{p_{2}^{e_{2}}} \cdots \times \mathbb{Z}_{p_{k}^{e_{k}}}$
- G isomorphic to direct product of possibly repeating primary cyclic groups

$$
g \in G \Leftrightarrow g=\left(g_{1}, \ldots, g_{k}\right), g_{i} \in \mathbb{Z}_{p_{i}^{e_{i}}}
$$

- Call g_{i} as the i th digit of g

Groups - An Introduction

- G-a finite abelian group of order n
- $G \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \mathbb{Z}_{p_{2}^{e_{2}}} \cdots \times \mathbb{Z}_{p_{k}^{e_{k}}}$
- G isomorphic to direct product of possibly repeating primary cyclic groups

$$
g \in G \Leftrightarrow g=\left(g_{1}, \ldots, g_{k}\right), g_{i} \in \mathbb{Z}_{p_{i}^{e_{i}}}
$$

- Call g_{i} as the i th digit of g
- Prove coding theorems for primary cyclic groups

Nested Group Codes

- Group code over $\mathbb{Z}_{p^{r}}^{n}: \mathcal{C}<\mathbb{Z}_{p^{r}}^{n}$
- $\mathcal{C}=$ Image (ϕ) for some homomorphism $\phi: \mathbb{Z}_{p^{r}}^{k} \rightarrow \mathbb{Z}_{p^{r}}^{n}$

Nested Group Codes

- Group code over $\mathbb{Z}_{p^{r}}^{n}: \mathcal{C}<\mathbb{Z}_{p^{r}}^{n}$
- $\mathcal{C}=$ Image (ϕ) for some homomorphism $\phi: \mathbb{Z}_{p^{r}}^{k} \rightarrow \mathbb{Z}_{p^{r}}^{n}$
- $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ nested if $\mathcal{C}_{2} \subset \mathcal{C}_{1}$

Nested Group Codes

- Group code over $\mathbb{Z}_{p^{r}}^{n}: \mathcal{C}<\mathbb{Z}_{p^{r}}^{n}$
- $\mathcal{C}=$ Image (ϕ) for some homomorphism $\phi: \mathbb{Z}_{p^{r}}^{k} \rightarrow \mathbb{Z}_{p^{r}}^{n}$
- $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ nested if $\mathcal{C}_{2} \subset \mathcal{C}_{1}$
- We need:
- $\mathcal{C}_{1}<\mathbb{Z}_{p r}^{n}$: "good" packing code
- $\mathcal{C}_{2}<\mathbb{Z}_{p^{r}}^{n}$: "good" covering code

Good Group Packing Codes

- Good group channel code \mathcal{C}_{2} for the triple $\left(\mathcal{U}, \mathcal{V}, P_{U V}\right)$
- Assume $\mathcal{U}=\mathbb{Z}_{p^{r}}$ for some prime p and exponent $r>0$

Good Group Packing Codes

- Good group channel code \mathcal{C}_{2} for the triple $\left(\mathcal{U}, \mathcal{V}, P_{U V}\right)$
- Assume $\mathcal{U}=\mathbb{Z}_{p^{r}}$ for some prime p and exponent $r>0$

LEMMA

Exists for large n if
$\frac{1}{n} \log \left|\mathcal{C}_{2}\right| \leq \log p^{r}-\max _{0 \leq i<r}\left(\frac{r}{r-i}\right)\left(H(U \mid V)-H\left([U]_{i} \mid V\right)\right)$

Good Group Packing Codes

- Good group channel code \mathcal{C}_{2} for the triple $\left(\mathcal{U}, \mathcal{V}, P_{U V}\right)$
- Assume $\mathcal{U}=\mathbb{Z}_{p^{r}}$ for some prime p and exponent $r>0$

LEMMA

Exists for large n if
$\frac{1}{n} \log \left|\mathcal{C}_{2}\right| \leq \log p^{r}-\max _{0 \leq i<r}\left(\frac{r}{r-i}\right)\left(H(U \mid V)-H\left([U]_{i} \mid V\right)\right)$

- $[U]_{i}$ is a function of U and depends on the group
- Extra penalty for imposing group structure beyond linearity

Good Group Packing Codes

- Good group channel code \mathcal{C}_{2} for the triple $\left(\mathcal{U}, \mathcal{V}, P_{U V}\right)$
- Assume $\mathcal{U}=\mathbb{Z}_{p^{r}}$ for some prime p and exponent $r>0$

LEMMA

Exists for large n if
$\frac{1}{n} \log \left|\mathcal{C}_{2}\right| \leq \log p^{r}-\max _{0 \leq i<r}\left(\frac{r}{r-i}\right)\left(H(U \mid V)-H\left([U]_{i} \mid V\right)\right)$

- $[U]_{i}$ is a function of U and depends on the group
- Extra penalty for imposing group structure beyond linearity
- Time for questions?

A Distributed Source Coding Problem

- Encoders observe different components of a vector source
- Central decoder receives quantized observations from the encoders
- Given source distribution $p_{X Y Z}$
- Best known rate region - Berger-Tung Rate Region, '77

Conclusions

- Presented a nested group codes based coding scheme
- Can recover known rate regions of broadcast channel
- Offers rate gains over random coding coding scheme

Conclusions

- Presented a nested group codes based coding scheme
- Can recover known rate regions of broadcast channel
- Offers rate gains over random coding coding scheme
- New bridge between probability and algebra, between information theory and coding theory

Conclusions

- Presented a nested group codes based coding scheme
- Can recover known rate regions of broadcast channel
- Offers rate gains over random coding coding scheme
- New bridge between probability and algebra, between information theory and coding theory
- It was thought that probability and algebra are nemesis

Conclusions

- Presented a nested group codes based coding scheme
- Can recover known rate regions of broadcast channel
- Offers rate gains over random coding coding scheme
- New bridge between probability and algebra, between information theory and coding theory
- It was thought that probability and algebra are nemesis
- Instead the match made in heaven

